An incinerator's material qualities are unlikely to become a problem if the unit is bought from a reputable dealer since stainless, aluminized, or heat-tempered steel is commonly used in their construction. Insulated models and those with heat shields may save energy and minimize the unit's exterior temperature. Those that have automatic controls will be more convenient and perhaps more economical. ### Location and Operation Incinerators should be used daily, so putting them in an area convenient to the poultry house will contribute to better management. Sheltering the incinerator from inclement weather will extend the life of the unit. For best results, it can be placed on a concrete slab. To avoid nuisance complaints, locate the unit downwind of the poultry house, residences, and neighbors' residences. Finally, always check that the discharge stack is far enough away from trees or wooden structures to avoid fires, since incinerators burn at intensely high temperatures. ### **Incinerator Costs** Cost is no doubt the chief factor limiting the use of incineration in mortality management. The total investment includes the initial purchase, subsequent maintenance, and the interplay between the rate of burn and the price of fuel. Equipment costs vary depending on the size and type of the incinerator. Afterburner devices that recycle the fumes will help control odors and dust but will likely be priced as accessories. Expendable parts and grates will also need to be replaced periodically — perhaps every two or three years — and the whole system may need replacement (or overhaul) every five to seven years. The rate of burn will vary depending on the weight, moisture, and fat content of the carcasses and on the loading capacity of the unit (e.g., incinerators may have to be loaded several times to handle a day's mortalities). Assuming an average burn rate of about 65 pounds per hour (based on past experience), and a fuel cost of 50.61 per gallon, a grower will expend \$3.50 per day to incinerate 100 pounds of mortalities (1990 estimates). If fuel prices increase, so will the cost of each day's burn. Growers have for the most part been unwilling to risk the high costs involved in this process, since they have no control over the price of fuel, and because the choice of incineration also means the loss of any nutrient value that the mortalities might have had if composted for land applications or rendered for other uses. New technology may be the key to changing attitudes about incineration. Influenced by technological advances, current manufacturing specifications are producing a generation of incinerators that last longer, control emissions better, and burn more efficiently than older models in the field. Simply put: the new performance standards make it possible to separate the cost of incineration from the rising price of fuels. Thus, for example, trials on newer models have accomplished the same daily burn for less money than for older incinerators, even though fuel rates used in the computations were higher than those actually charged in 1990. Incineration is an acceptable and safe method of poultry mortality management. It does not risk the spread of disease or water pollution. If, as now seems likely, technology succeeds in controlling its cost and its air emissions, incineration will become more competitive among the various methods available for managing this aspect of production. Growers considering incineration as a method of poultry mortality management are encouraged to plan this action in connection with their entire resource management system. ### References Brown, W.R. 1993. Composting Poultry Manure. Presentation. Poultry Waste Management and Water Quality Workshop. Southeastern Poultry and Egg Association, Atlanta, GA. Donald, J.O., and J.P. Elake. 1990. Installation and Use of Incinerators. DPT Circular 11/90-014. Alabama Cooperative Extension Service, Auburn University, Auburn, AT # MANAGEMENT Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. PMM / 3 — 9/98 POULTRY WATER QUALITY CONSORTIUM ... POULTRY WATER QUALITY CONSORTIUM . 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 INCINERATION: A DISPOSAL METHOD FOR DEAD BIRDS 3 ## Composting — A Disposal Method for Dead Birds composting poultry mortalities or dead birds is a relatively new, practical, and sanitary alternative to burial pits and incinerators. It is an economical, fairly odorless, and biologically sound practice for broiler, turkey, layer, and Cornish hen operations. Management commitment is the key to successful composting. Composting resolves the disposal problem and yields a valuable product — a reduced odor, spongy, humus-like material that has several marketable uses ranging from soil conditioner to horticultural growing medium. Some states may require that composted birds be applied to the grower's own land; even so, composting has other values: - Composting is environmentally sound; properly done, it decreases the potential for surface and groundwater contamination. - ▼ Composting destroys disease-causing organisms and fly larvae. - The materials needed for composting mortalities, litter, and sometimes straw and water — are readily available. - Once a composting system has been set up, it will not require much labor; and - Compared to other options, composting is not a costly method of mortality disposal. ### **A Natural Process** Composting is a controlled, natural aerobic process in which heat, bacteria, and fungi fueled by carbon, nitrogen, oxygen, and moisture decompose organic waste, changing it into a stable product. The grower's tasks are to collect the carcasses and place them in alternating layers with the manure and straw (or other carbon source); and to monitor the process to ensure that enough heat is being generated to complete the process of decomposition. The grower will also turn the composting mixture, usually by moving it from one bin into another. Turning the compost ensures that the entire mass is sufficiently aerated. ### Composter Design and Operation Composting poultry mortalities can be done in or outside the poultry house, but it should always be done in an environmentally safe and healthy manner, under a roof, and protected from rain, stormwater, or surface water flow. Most poultry mortalities will be composted in a facility housing a two-stage large bin composter. A typical two-stage large bin composter is designed as follows: - ▼ The size of the primary bins is determined by the following equation: - V = flock size x (rate of mortality/total number of days) x average market weight x 2.5 cubic feet The secondary bins should be equal to, or larger, than the primary bins, since experience teaches that one cubic foot of primary bin and one cubic foot of secondary bin is needed per pound of daily mortality. - The height of bins should not exceed 5 feet. Heights greater than 5 feet increase compaction and the potential for overheating. - The width of the bins is usually selected to accommodate the loading equipment. A width of 8 to 10 feet is normal, but the bins could be wider. ### MORTALITY - ▼ The depth of large bins is not restricted. assuming that the operator has appropriate mechanized equipment to manipulate the compost from front to back. Deeper bins are more difficult to enter and exit and take more time to work. Secondary bins can be larger, but they must have the same capacity as the primary bins (see Fig. 1). - Extra primary bins will provide useful storage for litter and straw. If high mortalities occur, these bins could be used for composting. - The ceiling height of the composter should be high enough to accommodate a front-end loader extended upward. The decision to use a composting system for poultry mortality management means that the grower is committed to managing the composter facility properly and seeking help as needed. Once the composter bins have been adequately designed, the building itself should be considered. A few general principles apply to the composting facility. ▼ Location and Access. The composting facility should not be located near any residence. Offensive odors are possible during - the composting process; and the handling of dead birds, manure, and litter on a daily basis may not be aesthetically pleasing. The site should be well drained and accessible; farm equipment is usually needed to carry dead birds and compost ingredients to the composter and to remove the finished com- - ▼ Foundations. An impervious, weightbearing foundation or floor, preferably of concrete, should be provided under primary and secondary composting bins. Experience has shown that after frequent loading and unloading activities, dirt or gravel tends to become rutted and potholed. A good foundation ensures allweather operation, helps secure against rodent and animal activity, and minimizes the potential for pollution of surrounding ### ▼ Building Materials and Design. Pressure-treated lumber or other rot-resistant materials are necessary. A roofed composter ensures year-round, all-weather operation, helps control stormwater runoff, and preserves composting ingredients. Adequate roof height is also needed for clearance when using a front-end loader. 2 COMPOSTING: A DISPOSAL METHOD FOR DEAD BIRDS Figure 2—Recommended layering for dead bird composting. The amount of rain that is blown into the composter can be minimized by the addition of partial sidewalls or curtains and guttering along the roof. ### Composting Recipe and Method For composting poultry mortalities in
a twostage composter, a prescribed mixture of ingredients is used called a "recipe." The recipe calls for dead birds, litter, straw or other carbon source, and water (Table 1). Recipes for a single-stage composter differ slightly. Proper layering of the recipe will ensure appropriate heat (from microbiological activity) for composting the mortalities in about 14 days. To begin, place 6 to 12 inches of litter or manure, followed by a 6-inch layer of loose straw to provide aeration, followed by a layer of dead birds. Depending on the moisture content of the manure or cake, water may or may not be added. Repeat this layering process until the pile or bin is full (see Fig. 2). Table 1.-Typical recipe for composting dead birds with litter, straw, and water as ingredients. | INGREDIENTS | PARTS BY VOLUME | | |-------------|-----------------|--| | Dead Birds | 1.0 | | | Litter | 1.5 | | | Straw | 0.5 - 0.75 | | | Water | 0.0 - 0.5 | | Water as an ingredient may not be necessary. Too much water can result in anaerobic conditions. An alternate recipe uses I part birds with 2 to 3 parts of litter cake (i.e., litter having a high moisture content). Leave 6 to 8 inches of space between the edges of the dead bird layer and the wooden wall of the composter. This space allows air movement around the pile and keeps carcasses nearer to the center of the pile, where the heat is highest. Do not stack dead birds on top of each other. They may be adjacent to one another, even touching, but they must be arranged in a single layer. Spread litter or manure and straw as evenly as possible. COMPOSTING: A DISPOSAL METHOD FOR DEAD BIRDS 3 Use the same layering sequence (dead birds, litter, and straw) after loading mortalities that only partially complete a layer. If dead birds are carelessly loaded — stacked one on another or placed against the sidewalls of the structure — they will putrefy. Once the compost pile is complete, or full, "cap it off" with a 6-inch layer of dry litter, manure, straw, or similar material to reduce the potential for attracting flies and to provide a more pleasing appearance. This same recipe can be used for composting caged layers, broilers, turkeys, breeders, or other types of poultry. Mixing, aerating, and moving the composting mass with a front-end loader or shovel will uniformly distribute the ingredients, add oxygen to the pile, and reinvigorate the composting process. Temperatures will rise after each mixing until most readily available organic material is consumed. After the pile is capped, wait 11 to 14 days before turning the mixture. However, if the temperature falls below 120 °F or rises above 180 °F, the compost pile should be aerated or mixed immediately. Successful composting requires a specific range of particle sizes, moisture content, carbon-to-nitrogen ratio, and temperature. The following general rules apply: - ▼ Particle Size. Particles that are too small will compact to such an extent that air movement into the pile is prevented. Material that is too large allows too much exchange of air, and so prevents the heat from building up properly. A proper mixture of size allows both air exchange and temperature buildup. - ▼ Moisture Content. The ideal moisture content in the composting pile ranges from 40 percent to 60 percent. Too much moisture can cause the pile to become saturated, which excludes oxygen. The process then becomes anaerobic, a condition that results in offensive odors and attracts flies. Runoff from a composter that is too wet can pollute the soil or water. Too little moisture reduces microbial activity and decreases the rate of composting. - Carbon-to-Nitrogen Ratio. Carbon and nitrogen are vital nutrients for the growth and reproduction of bacteria and fungi; therefore, the ratio of carbon to nitrogen (C:N) influences the rate at which the composting process proceeds. Conditions are most ideal for composting when the C:N ratio is between 15:1 and 35:1. If the C:N is too high, the process slows down because it has insufficient nitrogen. This imbalance can be corrected by adding more manure or litter to the compost pile. If the C:N ratio is too low, the bacteria and fungi cannot use all of the available nitrogen, and the excess nitrogen will be converted to ammonia, resulting in unpleasant odors. This problem is fixed by adding more straw or sawdust. More recent experience has shown, however, that composting poultry mortalities results in a partial compost. Hence, maintaining the exact carbon-to-nitrogen ratio, while important, is not critical. Many recipes now reduce or eliminate straw entirely, substituting cake, as previously noted, or even the composted product. In fact, 50 percent of the contents in the secondary bin can be input with a new batch of mortalities in the primary bin. This practice reduces the amount of compost that will need to be land applied by 50 percent. * Temperature. The best indicator of proper biological activity in the composter is temperature. Use a probe-type 36-inch stainless steel thermometer, 0 to 250 °F, with a pointed tip to monitor temperatures within the compost pile. Optimum temperature range is 130 to 150 °F. When the temperature decreases, the general problem is that not enough oxygen is available for the bacteria and fungi. Oxygen can be replenished by turning or aerating the pile. Temperatures will rise as the composting process repeats itself. The cycle of composting, turning, composting can be repeated as long as there is organic material available to compost and the proper moisture content and C:N ratio are present. When temperatures reach the optimum range for three days, harmful microorganisms (pathogens) and fly larvae will be destroyed. Daily recording of the temperatures in the piles is important because it will indicate whether the bacteria and fungi are working properly. ### **Financial Considerations** Costs of composters depend on many factors—size, configuration (e.g., work areas, ingredients, and finished compost storage), and utilities. Some composting structures have been built for as little as \$500; others, for as much as \$50,000. No specific plan or layout for composters works best in all cases. Many different designs will perform adequately, but management capabilities determine the success of the composting process. Standard plans and management information for poultry mortality composters are available through local USDA Natural Resources Conservation Service or Cooperative Extension Service offices. Financial aid or cost-share funding may be available to help pay for the design and construction of composting facilities. Check with your local conservation district, USDA Natural Resources Conservation Service, or Cooperative Extension Service offices to learn more about these programs. Changes in the recipe and design of composters are an indication that this practice is still in development, and further refinements can be expected. In the meantime, the composter designs now available can be used not only to deal with routine mortalities, but also for catastrophic losses. Growers interested in using this mortality management approach are urged to contact the appropriate local, state, and federal agencies for assistance. ### Composting Catastrophic Event Mortalities Composting large numbers of poultry mortalities after a catastrophic event is relatively simple and inexpensive, and should be considered over burial for water quality protection. The process is the same as for normal mortality numbers, but without the bins. Catastrophic mortality can be composted in the bedding or litter where the poultry were housed if the whole population is involved and adequate space and time are available, or they can be composted outside. Prior planning is necessary to ensure that the materials needed to build the composting pile or windrow (especially the bulking agent, sawdust, wood chips, or straw) will be on hand. When composting catastrophic mortalities in a windrow, allow at least one cubic foot of bulking material per 10 pounds of expected mortality (e.g., 1,000 birds at three pounds each would require 300 cubic feet of bulking material); and size the windrow according to need. A window 12 feet by 6 feet high will hold approximately 300 pounds of mortality. Thus, 1,000 birds at 3 pounds each would require a windrow 3 feet long with appropriate end cover, and the materials needed per cubic foot of windrow length (300 pounds of mortality) would be 400 pounds of litter and 700 pounds of sawdust or other bulking agent. Nine steps are needed to build a windrow: - select a well-drained site; - make a bed layer of wood chips 12 inches thick and 12 feet wide for the length of the windrow; - add a 4-inch layer of fluffed straw as a base; - deposit an 8 to 10 inch layer of mortalities, but stop about a foot from the edge of the lower layer; - ▼ spray the mortalities with enough water to saturate the feathers; - deposit a six-inch layer of sawdust or other bulking agent to the width of the birds; and - repeat steps three to six as needed. Then. - ▼ starting from the bottom, cover the entire pile with a layer of sawdust, two to four inches thick; and - ▼ add to the length of the windrow as more mortality develops. ### To maintain the windrow: - use a long-stemmed thermometer to ensure that the temperature is rising it should reach 135 to 145°F within a week - ▼ as the temperature declines (after 7 to 10 days) to 115 to 125°F, turn the windrow; COMPOSTING: A DISPOSAL METHOD FOR DEAD BIRDS 5 - in turning the material, be sure to lift and drop it in place (rather than merely pushing it) to form a new windrow; - add water if the material is too dry (does not leave your hand moist when squeezed), or sawdust, if it is too moist (drips more than two drops in your hand); and - cover any exposed carcass tissue in the new windrow with more sawdust. After an additional three or four weeks the compost can be added to manure in storage for land
application. Because the poultry industry is so often concentrated in a geographic region, there can be many opportunities for recycling the byproducts of production, including normal and catastrophic event mortalities. Composting normal and catastrophic poultry mortality on the farm can save transportation fees and tipping costs, reduce the potential spread of pathogenic diseases, and prevent groundwater pollution from burial practices. ### References Arkansas Soil and Water Conservation Commission and the Water Resources Center. No date. Composting: A Safe and Simple Alternative in Water Quality and Poul- - try Disposal Pits. Fact Sheet 2. Arkansas Soil and Water Conservation Commission. Little Rock. - Brown, W.R. 1993. Composting Poultry Mortality. Presentation. Poultry Waste Management and Water Quality Workshop. Southeastern Poultry and Egg Association, Atlanta, GA. - Carr, Lewis E. et al. In press. Composting Catastrophic Event Poultry Mortalities. Fact sheet 723. Maryland Cooperative Extension Service, University of Maryland, College Park, MD. - Donald, J.O., C. Mitchell, and V.W.E. Payne. No date. Poultry Waste Management and Environmental Protection Manual. Circular ANR 558. Cooperative Extension Service, Auburn University, Auburn, AL. - Fulhage, C. 1992. Composting Poultry Carcasses in Missouri. WQ205. Cooperative Extension, University of Missouri, Columbia. - Hammond, C. 1994. Poultry Composting Facilities. Cooperative Extension Service, The University of Georgia, College of Agricultural and Environmental Sciences, Athens, GA. - Murphy, D.W. 1993. Minicomposter Dead Bird Disposal. Fact Sheet 642. Cooperative Extension, University of Maryland, College Park. - Murphy, D.W., and L.E. Carr. 1991 rev. Composting Dead Birds. Fact Sheet 537. Cooperative Extension, University of Maryland, College Park. - Scarborough, J.N., D.H. Palmer, and T.H. Williams. No date. Composting Structures for Dead Poultry. Delaware Cooperative Extension, University of Delaware, Newark. - U.S. Department of Agriculture. 1993. Agricultural Waste Management Handbook, Part 651. Soil Conservation Service, Washington, DC. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. PMM / 4 - 9/98 POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 6 COMPOSTING: A DISPOSAL METHOD FOR DEAD BIRDS # MORTALITY COMPOSTERS — SMALL BINS, MINICOMPOSTERS, AND PACKAGED DEALS The composting process used in two-stage composting (see PMM / 4) can be adapted to fit various poultry operations and management styles. Mortalities are unavoidable whether the birds — or the operation — are large or small; but not all growers have the same access to mechanized equipment. ### Small Bin Composting Systems Small bin composters are two-stage composters developed for use on farms with limited equipment. Size of the primary bins is limited, primarily by the reach of the loader; so how many bins there will be is determined by how many are needed to dispose adequately of the mortalities. The secondary bins must be equal in capacity to the primary bins, but may be fewer in number than the primary bins and larger—they may be, and often are, twice the volume of the primary bins. Recall the equation (in PMM / 4) for determining the size of the bins in the large bin composter: V = flock size x (rate of mortality / total number of days) x average market weight x 2.5 cubic feet The same equation can be used to size the small bins. Growers using limited equipment will probably want to build smaller bins. That is, they will build as many small bins — each about $5' \times 5' \times 8'$ — as they need to reach the required volume. Table 1 illustrates this equation. It shows the number of primary bins that broiler growers will need depending on the size of their flock, the birds' weight and the volume in the bin for flocks ranging from 20,000 to 200,000 broilers. ### Minicomposters Growers raising fewer birds and wanting to use only hand labor may prefer another composting style. The advantage of using smaller minicomposters is that adequate decomposition of the birds can be completed in one cycle, so no secondary bins are required. These really small inhouse composters, which can simply be pallets tied together to make a three-sided cubicle or box, do not even require floors. These bins can be constructed to approximate a 4' x 4' x4' cube. Litter from the previous flock is spread on the floor of the cubicle, then a single layer of birds are covered with twice that volume of litter (a two to one ratio). The composter should be capped off before a new bin is opened for the next flock. The compost can be land applied when the live birds are marketed. This composter can be placed either within the growout facility or outside the growout facility under a separate roofed building. In-house composters can also be made using four screen-and-lumber panels (about 40' x 36') to construct a single square bin (Fig. 1). Each bin has a capacity of up to 30 pounds of dead birds per day or a total capacity of 600 pounds. Four to six such bins will handle the dead birds from a 20,000-bird broiler house at a cost of about \$500. Position assembled bins at a location convenient for gathering the dead birds and for easy access for unloading between flocks. ### **Packaged Composters** Packaged or manufactured composters offer yet another way that poultry growers can improve on this ancient technique for handling organic waste. Growers who use prefabricated composters can collect the composted material | Table 1.—Number of First Stage Composter Bins Required for Broilers Using 5ft x 5ft x 8ft Bins. | | | | | |---|-----------------------------|--------------------------------|-----------------------------|--| | NO. OF BROILERS | LBS. DEAD/DAY
ON DAY 50* | VOLUME IN
1st STAGE**
cf | no. of bins in
1st stage | | | 20,000 | 67 . | 168 | 2 | | | 40,000 | 134 | 335 | 2 | | | 60,000 | 201 | 503 | 3 | | | 80,000 ; | 268 | 670 | 4 | | | 100,000 | 335 | 838 | . 4 | | | 120,000 | 402 | 1,005 | 5 | | | 140,000 | 469 | 1,173 | 6 | | | 160,000 | 536 | 1,340 | 7 | | | 180,000 | 603 | 1,508 | 8 | | | 200,000 | 670 | 1,675 | 8 | | * Assumes mature weight of 4.2 lbs; flock loss of 4% or 0.8 bird/day/1000. ** (Total weight loss near maturity) x (2.5 cf/lb dead wgt) = volume storage required. Source: USDA Composting Facility Guide. Figure 1.—Typical in-house composter. that lies in the bottom of the box and shovel, or recycle, it back into the top. The compost, in effect, is substituted for the manure or litter used in the two-stage and minicomposters. Peanut hulls or other material can be added if a bulking agent is needed to supply oxygen, and a small amount of new litter can be added periodically to ensure the right carbon to nitrogen ratio. Recycling the compost, which can also be done in two-stage composters, has an additional environmental benefit: it can reduce by as much as 50 percent the amount of composted material to be land applied. Prefabricated composters, which should be used according to the manufacturer's specifications, are primarily used by broiler growers producing up to 50 and 60 thousand birds. To reduce compaction and oxygen depletion, the loading rate per day should be reduced as the weight of the birds increase, and at maximum capacity, only two layers of birds should be placed in the composter each day — one layer is preferred. ### Operating a Minicomposter The process for composting in a single-stage, or minicomposter, begins with layering the recipe. The start-up materials are 200 pounds of litter, one-third bale of straw (though some find that straw is not necessary for effective composting), and 15 gallions of water. Add the ingredients to the bin in the following order: 6 inches of loose straw, 65 pounds dry litter, and 5 gallions of water. Repeat the layering process three times until all start-up ingredients have been used. Check the temperature by inserting a thermometer; when the material reaches 140 to 150 °F, the composter is ready to begin processing dead birds. Form a V-shaped 18-inch deep trough in the center of the bin. Add straw, dead birds, lit- 2 MORTALITY COMPOSTERS: SMALL BINS. MINICOMPOSTERS, AND PACKAGED DEALS ter, and water and cover or cap with start-up ingredients. Avoid placing dead birds closer than 6 inches to the walls. Mixing and aeration take place when the bin is prepared for the next load of dead birds (Fig. 2). Loading rates should not exceed 25 pounds per day per minicomposter. Record the temperature at a depth of 8 to 20 inches in the center of the pile daily. Repeat this procedure until the bin is filled. Thereafter, compost from prior operations can be used in place of new materials to restart. Figure 2.-Loading an in-house composter. A minicomposter for outdoor use is usually 48" x 48" bin set on a 4-foot square is a workable size. Place the bins on a concrete pad under a roof to protect the compost from excessive moisture, anaerobic conditions, and pests. Outside composters use the same recipe and management as in-house minicomposters, but adjustments can be made to suit individual situations. The time and hand labor required to manage an outside composter must be carefully considered before installation. The cost of an outside minicomposter varies from \$500 to \$1,500, depending on the materials used. ### Composting Compared to Other Disposal Practices An emerging technology in the early
1990s, composting is now a preferred method of mor- tality management. It protects the environment and animal and human health, and it does not have quite the risk of air pollution that incineration does. In addition, composting can be scaled up or down in size, with corresponding differences in the grower's costs. Most comparisons between composting and other disposal methods use the price of the two stage composter as the base composter cost. In fact, minicomposters can be built for a third or less of that cost. Changes in the recipe and design of composters are an indication that this practice is still in development, and further refinements can be expected. Growers interested in using this mortality management approach are urged to contact the appropriate local, state, and federal agencies for assistance. Standard plans and management information for poultry mortality composters are available through the USDA Natural Resources Conservation Service or Cooperative Extension Service offices. Low interest loans or cost-share funding may be available in some states to help pay for the design and construction of composting facilities. Check with your state agencies and the USDA Consolidated Farm Service Agency to learn more about these programs. ### References Brodie, H.L. and L.E. Carr. 1998. Composting Animal Mortalities on the Farm. Fact Sheet 717. Cooperative Extension Service University of Maryland. College Park and University of Maryland Eastern Shores. Donald, J.O., C. Miller, and V.W.E. Payne. 1996. Poultry Waste Management and Environmental Protection Manual. Circular ANR 558. Cooperative Extension Service, Auburn University, Auburn, AL. Hammond, C. 1994. Poultry Composting Facilities. Cooperative Extension Service and University of Georgia College of Agriculture and Environmental Sciences. In cooperation with the Tennessee Valley Authority. University of Georgia, Athens GA. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. PMM / 5 — 9/98 POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fex: 423 855-6607 # New Takes on the Rendering Process — Refrigeration, Fermentation, and Acid Preservation Rendering — the process fats, usually by cooking, to produce usable ingredients such as lard, protein, feed products, or nutrients — is one of the best ways to convert poultry carcasses into other products. We are now able to reclaim or recycle almost 100 percent of inedible raw poultry material, including bones and feathers, through rendering techniques. Until recently, the animal protein in meat and bone meal residues was considered a waste of poultry processing; it was usually discarded, though it could sometimes be used as a fertilizer. Now rendering plants pick up or receive about 91 million pounds of waste annually to supply 85 percent of all fats and oils used in the United States. They also export 35 percent of the fats and oils used worldwide. Rendering operations provide a vital link between the feed industry and the poultry grower; they also help control odor and prevent air and water pollution. Rendering has not been widely practiced, however, as an on-farm method of poultry mortality management. Few rendering facilities are located in the production area and carcasses do not remain fresh long enough to be delivered long distances. Further, any transportation of the carcasses off-farm could spread avian diseases. The converse of these difficulties is, however, rendering's great advantage as a management technique, namely, it does remove mortalities from the farm and relieve the grower of environmental concerns related to other methods of disposal. Its potential economic benefit increases as more of the product is successfully recycled. Spurred by such considerations and concern to prevent further nutrient losses, growers and their industry partners are taking a second look at the rendering process. Efforts to develop appropriate management and handling techniques to overcome obstacles associated with the routine pick up and delivery of carcasses to the rendering plant (especially the possible threat to avian health and the environment) have focused on long and short-term alternatives to the immediate delivery of carcasses for processing. The earliest management adaptations relied heavily on daily pickups and refrigeration; emerging technologies that may be safer and more cost effective include acid preservation, grinding and fermentation, and extrusion. ### Preparing for Immediate Delivery Raw or fresh poultry mortalities that are destined for a rendering plant must be held in a leak-proof, fly-proof container, and they must be delivered to, or be picked up by, a rendering company within 24 hours of death. All mortalities must be held in a form that retards decomposition until they are collected. ### Refrigeration Some producers are experimenting with a technique that combines on-farm freezing or refrigeration and the rendering process to determine whether freezing can be an effective way for growers to preserve the dead birds until they can be rendered. Large custom-built or ordinary commercial freezer boxes are being used to preserve dead birds until they can be picked up and delivered to the rendering plant. Custom-built boxes or units are usually free standing with self-contained refrigeration units designed to provide temperatures between 10 and 20 °F. Ideally, these freezer units will have no environmental or health impacts. The smaller ones are designed to allow the immediate removal of the carcasses from the grower; the larger ones, to hold the birds frozen until the box is full or otherwise scheduled for delivery to the plant. Large domestic freezers will hold about 250 to 300 pounds of dead birds. Specifically designed boxes can handle 1,600 to 2,000 pounds of dead birds and are easily loaded through various door arrangements. These units must also be sealed against weather and air leakage. Putting the birds in the freezer in a single layer and on a daily basis helps ensure that all the carcasses will be properly frozen. Fresh unfrozen carcasses are added to the top layer. Temperatures are set to freeze and should be regularly monitored to detect malfunctioning equipment, and overloading is strongly discouraged as that can also inhibit the freezing process. The freezers remain on farm until the end of each growing cycle when they are emptied into a truck for transportation to the rendering facility. The refrigeration unit never leaves the farm, only the container holding the dead birds is removed or emptied. Refrigeration is still an expensive option, though most of these units will last roughly 10 years and operate on energy efficient circuit boxes with an operating cost of about \$1.50 per day. Transfer of pathogens or harmful microorganisms between farms has not been found to be a problem with this method of collection. Although additional experience is needed to determine the effectiveness of this option, its proponents stress its usefulness as a way to reduce or eliminate potential pollution and improve conditions on the farm. ### Fermentation Fermentation procedures, first proposed in 1984 and not commercially tested until 1992, are a more demanding but safer and perhaps more cost-effective method of preserving carcasses until the industry is prepared to handle their further processing and reuse. In fact, fermentation safely disposes of poultry mortalities by "processing" them on site. The pickled carcasses can be stored until the end of the growing cycle or until sufficient volume is attained for delivery to a rendering plant. Fermentation begins in a grinder. The carcasses are ground into small particles (each piece measures roughly an inch) and a fermentable carbohydrate is added to the container. The grinding action disperses and mixes anaerobic lactic acid-forming bacteria found naturally in the birds' intestines; the carbohydrate provides the bacteria "opportunity" to ferment the ground mortalities; and the result is the production of volatile fatty acids and a reduction of pH — from 6.3 in the fresh tissue material to the 4.5 pH of the carbohydrate mixture. It is the decline in pH that effectively preserves the birds' nutrient contents. In sum: the activity of anaerobic bacteria (*Lactobacillus*, sp., which are found naturally in poultry) converts the carbohydrate into lactic acid and lowers the pH to less than 5.0, thus inactivating the pathogenic microorganisms in the carcasses and preserving the organic materials. The first commercial on-farm fermentation system was designed to accommodate daily broiler mortalities. It consisted of a grinder and tanks housed in a shed equipped with electricity and water. The grinder was constructed to incorporate the carbohydrate during the grinding process. The carbohydrate source may be sugar, whey, corn, or molasses, depending on which of these materials is most available to the grower. In the first commercial facility, corn was added on a 20-percent weight to weight basis. The mixture of ground corn and mortalities passes from the grinder directly into an enclosed tank where the fermentation process takes place. Sugars in the corn are converted to lactic acid; the pH level drops; and within seven to 10 days, the lactic acid bacteria increase sufficiently to preserve the carcass nutrients. The fermented material can be kept in a stable state for several months, easily accommodating its transport at the end of a grow-out cycle. The equipment should be cleaned routinely. After each use, the
grinder can be flushed with a minimal amount of water that can be rinsed into the holding tank. The entire grinder should be disassembled and thoroughly cleaned each month. The initial investment in this process is relatively high — for the building, grinder and tanks, and their installation. The first commercial system cost \$8,200; the value placed on the fermented product was \$.02 per pound. The net cost of fermenting the mortalities per pound was estimated at \$.045 per pound, or fractionally less than composting (\$.048) and almost half the cost of incineration (\$.089, using 1992 figures). Mortalities are a continuous and growing challenge for the poultry industry. The fermentation process is clearly a technology that meets the biological and environmental criteria required for the proper disposal of on-farm mortalities. Growers and their companies must carefully weigh these advantages against the managerial and economic trade-offs involved in selecting this practice. ### **Acid Preservation** Preserving foodstuff by acidification has been a widespread practice in agriculture. This method of preserving dead birds is the same as the fermentation process except that propionic, phosphoric, or sulfuric acid is added to the poultry carcasses, which are kept in an airtight, plastic container. Sulfuric acid may be preferred because it (1) retards spoilage, (2) excellently preserves the carcass, and (3) is relatively low in cost. However, safe handling and storage of the acids on-farm are important concerns. Carcasses can be punctured with a blunt metal rod rather than placed through a grinder. Punctured carcasses can be separated from the acid solution without the accumulation of sludge in the holding container. ### Selecting a Holding Method The product resulting from acid preservation and lactic acid fermentation reduces the transportation costs associated with rendering by 90 percent. What is more important, however, is that these processes eliminate the potential for transmitting pathogenic organisms into the rendered products or the environment. In an expanding poultry industry, the production of manure and mortalities will only increase. Producers should contact the renderers in their area to determine which holding and transportation methods are acceptable, and they must increase their search for safe, cost-effective disposal and reuse methods. Every possible safe method should be explored until each grower determines the method most compatible with his or her situation and management abilities. Rendering, like composting, adds value to the end product that can help offset mortality management costs. ### References - Blake, J.P. 1993. Mortality Management. Presentation. Poultry Waste Management and Water Quality Workshop. Southeastern Poultry and Egg Association, Atlanta, GA. - Blake, J.P., and J.O. Donald. 1995. Fermentation of Poultry Carcasses. Circular ANR-955. Alabama Cooperative Extension Service, Auburn University, Auburn, AL. - Lomax, K.M., G.W. Malone, and W.W. Saylor. 1991. Acid Preservation for Poultry Carcass Utilization. Paper No. 91-4051. American Society of Agricultural Engineers, Albuquerque, NM. - Murphy, D.W., and S.A. Silbert. 1992. Preservation of and Nutrient Recovery from Poultry Carcasses Subjected to Lactic Add Bacteria Fermentation. Journal of Applied Poultry Research 1(1):66-74. - Zimmerman, M. 1993. Freezing for the Rendering Plant. Poultry Waste Management and Water Quality Workshop. Southeastern Poultry and Egg Association, Atlanta, GA. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. PMM / 6 — 9/98 **POULTRY WATER QUALITY CONSORTIUM** 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 NEW TAKES ON THE RENDERING PROCESS: REFRIGERATION, FERMENTATION, AND ACID PRESERVATION 3 # DEVELOPING ALTERNATIVE MARKETS FOR POULTRY MORTALITIES rarketing considerations are often the deciding factor when egg producers and other poultry growers begin to design a mortality management practice for their operations. Chickens, like other animal species, have determined life cycles, foreshortened admittedly, for human consumption, but all chickens return eventually as elements to the earth from which they came. How we handle their "remains," especially when large quantities are involved, is at least partly related to whether they can be recycled, traded, or sold for additional use. Would further processing of spent hens and other farm mortalities yield additional products or value-added components of products? Many growers, other agricultural groups, and market analysts believe they do. If no markets exist, assuming for discussion, that all other considerations are equal, then traditional methods (e.g., composting and incineration) may be the best management practices to facilitate the decomposition process. Such practices are, when appropriately designed and operated, effective and safe, although stringently regulated. Where markets for the processed by-products do exist, for example, at feed mills, then newer practices (e.g., refrigeration, fermentation, and eventual rendering) are perhaps the most efficient methods for disposing of spent hens and other farm mortalities. Rendering is costly, however, and usually feasible only at capacities that usually exceed the grower's or processor's normal production cycle. Alternative technologies can provide ways for growers and their companies to deal with these materi- als without having to send them (usually at a negative cost) to distant renderers. Fermentation and composting are discussed elsewhere in this handbook (see fact sheets numbered PMM/4 and 5, and PMM/6). Other methods currently being developed by commercial manufacturers, agricultural research programs, and processors include new grinder/mixers to enhance the fermentation process, and dry extrusion systems. ### Feather Removal Feathers on carcasses are a problem for renderers. The feathers, which constitute about 10 percent of the body on a dry weight basis, are nondigestible to nonruminant animals and dilute the nutrient concentration of hen poultry meal. Feathers also absorb cooking fat, which makes the cooked product difficult to handle. Removal of the feathers by hydrolysis, that is by cooking the fowl at high temperatures, pressure, and humidity, also degrades the quality of the other proteins. If the spent hens could be plucked before the rendering process, then virtually any renderer could accept the product for processing. Thus, a variety of methods are being tried to determine whether picking the birds can be successfully performed at the ren- Experiments to date suggest that carcass feathers can be successfully picked up to 24 hours post-mortem, using a batch scalding and picking system. Scalding bath time and temperature must be carefully monitored and calibrated to the carcass temperature to prevent overscalding from fixing the feathers in their follicles. It also appears that the amount of time a bird is taken off feed does not make the process any more or less difficult, and the feathers remaining on the carcass constitute about 0.1 to 0.2 percent of the total picked body mass. If, therefore, renderers determine to install a simple, feather picking facility, they will be able to process unlimited numbers of spent hens without compromising their product's quality or their production schedules. Another promising line of feather research suggests that a feather-degrading bacterium and its enzyme keratinase will soon make it possible to convert feathers into a digestible feed protein. If ground feathers can be converted into amino acids and peptides, poultry mortalities in general would have greater markets, since the feathers, at present detract from the marketability of the carcass. Feathers, like human and animal hair are made of a keratin protein that is resistant to digestion. About one million tons of feathers (and another million tons of animal and human hair) are produced each year. The keatinase must be purified from the feather degrading strain of Bacillus licheniformis, and then used in a bioreactor. This process is still being tested. ### A Note on Grinders The new grinders are basically automated, portable machines that can be used to grind up the mortalities — depending on the model, the machine can be used for broilers, large poultry carcasses (i.e., turkeys) and even hogs. The material is then transferred to a fermentation storage tank and kept on-farm until ready for use. The flow rate depends in part on the size of the mortalities, the smaller models handle approximately 75 pounds per minute; the larger ones may have a flow rate as high as 300 pounds per minute. The complete system has a grinder, catalyst mixer and a material transfer pump (see PWM/6 for a description of the uses and benefits of this management practice). ### Dry Extrusion The dry extruder was developed in the 1960s to process soybeans and grains. In this process, friction is used to generate high temperatures and pressure in a very short time. High temperatures are reached in as few as 30 seconds, and pressure quickly builds to 40 atmospheres. Under pressure, the cells rupture, that is, their contents extrude (are forced out), which frees the moisture in them. The product can then be heat-dried to a minimum moisture of about 10 percent before the product is cooled and stored. Thus, the birds are cooked, sterilized, and dehydrated almost immediately. Until recently, the high moisture content of poultry by-products prevented the completion of the dehydration
process without serious loss of the product's nutrient value. But in the extrusion process, the poultry byproduct can be diluted with corn, wheat middlings, or soybean meal. The result is a partially dehydrated nutrientrich mixture that is 50 to 60 percent poultry byproduct and 40 to 50 percent a dry ingredient of choice. The products are marketable, for example, as a feed component for layers or as a protein supplement for broilers. Universities report that the extruded product produces outstanding results when fed to other broiler chicks, layers, and turkeys. Analyses performed on various dry-extruded products, including whole spent hens, turkeys, and broilers at different ages and treated and untreated feathers, indicate that the nutritional value of these products is comparable to, or better, than corn/soybean meal diets. Microbiological analyses also support extrusion as a safe complement to the rendering process. Before and after extrusion tests indicate that the high heat and pressure are sufficient to dispose completely of aerobic microorganisms even if they were present in the birds prior to processing. In one test, avian infectious disease agents, such as Salmonella typhimurium, Coccidia, turkey rotavirus, and others, were added to the poultry by-product before extrusion. After extrusion, tests for these organisms were negative, and the turkeys who were fed this product likewise showed no visible signs of disease lesions and no viruses in their intestinal tracts. ### The Feasibility of Extrusion The process of dry extrusion begins with finding a way to bring the product safely to the extrusion facility where it can be mixed with the dry ingredient of choice. Then the mixture is cooked in the extruder, moved to the thermal 2 DEVELOPING ALTERNATIVE MARKETS FOR POULTRY MORTALITIES dryer, cooled and removed to a final storage bin. This method has been tested, developed and implemented as a complement to rendering. Commercial operations exist in the United States, Canada, Poland, and other countries. Its feasibility depends on (1) the volume of the by-product available for processing and its value to the operation without further processing, if any; and on (2) how the finished product will be used, that is, what exact moisture content and nutritional value is suitable for the market for which you are preparing the final product. Answers to these questions make it possible to determine which dry ingredient should be added to the poultry byproduct and whether the cost of production can be justified. ### References - Reynolds, D. 1990. Microbiological Evaluation of Dead Bird Meal. Presentation at a Midwest Poultry Federation Education Program, Minnezpolis, MN. - Rich, Jim. 1994. Alternative Markets, Scheduling, Transport and Handling of Spent Hens. 1994. National Poul-try Waste Management Symposium. Athens, GA. - Ruszler, Paul L. 1994. Utilizing Spent Hen and Normal Flock Mortality. National Poultry Waste Management Symposium. Athens, GA. - Said, Nabil W. 1996. Extrusion of Alternative Ingredients: An Environmental and a Nutritional Solution. Journal of Applied Poultry Research 5:395-407. - Xiang Lin, Jason, C.H. Shih, and harold E. Swaisgood. 1996. Hydrolysis of Feather Kenatin by Immobilized Keratinase. Applied and Environmental Microbiology 62(11): 4273-4275. - Webster, A. Bruce, and Daniel L. Fletcher. 1996. Feather Removal from Spent Hens up to 24 Hours Post-Mor-tem. Journal of Applied Poultry Research 5:337-346. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water PMM /7 -- 9/98 for everyone. > **POULTRY WATER QUALITY CONSORTIUM** 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 DEVELOPING ALTERNATIVE MARKETS FOR POULTRY MORTALITIES 3 ### Humane Methods for Dealing with Spent Hens times the eggs may not be marketable. The producer can temporarily reverse this decline or recover production for six or eight months through an induced molt. By the time hens are two years old, and veterans of two or three production cycles, they will have to be replaced. The productive life of as many as 130 million hens must be terminated each year in the United States. On a per farm basis, the figure may run from 50,000 to 125,000 hens (which is about 375,000 pounds); or it could potentially run to about three million hens in a large complex. In former times, these surplus or spent hens were marketed to poultry processing plants for a few cents a pound. After all, such hens can be canned or cooked. If cooked and deboned, the broth can be used for soups; the meat, for salads, soups, and chicken pot pies. Now, however, the increasing size and concentration of the egg industry, changes in breeding patterns (to make both egg and meat production more efficient), and the increased availability of broiler breeder hens and broilers have reduced the market for spent hens. Leghorn hens now have smaller bodies and less muscle tissue; and their bones are often brittle. Broiler breeder hens, on the other hand, are bred to grow rapidly and produce a large amount of meat, and they have minimal bone particle problems. Consequently, food processors find it less economical to buy the spent Leghorns, preferring the more tender broiler breeder hens with their higher meat tissue to bone ratio. ### Difficulties in Rendering As fewer local processors want spent Leghorn hens, alternative markets or other management strategies must be used. Properly processed spent hen carcasses can be a valuable ingredient in animal feed mixtures for runninants, poultry, mink farms, aquaculture, and pets. Getting the birds to renderers for eventual use in the feed milling industry is an attractive option but several obstacles remain to be worked out. For example, egg production units are far more scattered than broiler units. The rendering industry, on the other hand, is geographically distant from most egg producers. Only three plants in the United States are equipped to take the whole bird — feathers and all. In addition, lengthy transportation to the renderers is costly and involves at least a degree of biological risk. The replacement of spent hens is seasonal and the processed yield per bird is small. It is difficult to convince renderers, who may be thinking about a commitment to this source, that the supply of spent hens will justify their investment in facilities and product development. Egg producers faced with this new problem have resisted binding contracts. Many egg producers like to sell to traditional processors whenever they can, while depending on renderers only when conditions compel them to do so. Finally, renderers expect the birds to be delivered ready for processing — that is, dead on arrival. Therefore, even if rendering is the most attractive disposal option, all things considered, the egg producer is still the one responsible for humane death and preservation of the carcass. If spent hens are to be disposed of on the farm, they must still be removed from the Figure 1.-Interior view of a modified atmosphere killing cart. house and humanely killed. Then we must consider mortality management and whether the birds should be buried, incinerated, composted, rendered, frozen or fermented. ### Humane On-farm Killing Depopulating an entire layer house will be emotionally and physically taxing. Like all management practices, where and how it will take place must be properly planned. Planning criteria include concern for the animals' welfare, biological security, the environment, and the ability to perform the task efficiently and cost-effectively. The physical and emotional effect on farm personnel should also be considered. Guidance, standards, and regulations are available through local or state veterinary health and agriculture agencies. The American Veterinary Medical Association has specified cervical delocation as one way that spent hens may be humanely killed. However, recent studies in Britain indicate that this method may not induce immediate unconsciousness. The method used in many commercial poultry processing plants may also be adapted for on-farm use. In this procedure, an electrical stunner is used in combination with a compact shackling line. An arm of the line near the end acts as a tipoff, automatically dropping the birds into a truck for removal from the farm. Alternatively, the birds could be delivered to a second on-farm station for scalding and defeathering the carcasses. Some drawbacks apply to this method, however. Care must be taken to ensure that each bird is properly stunned. Workers must be protected from dust and pathogens, depending on where the equipment is located; and the market for the spent hens must be strong enough to justify the investment in equipment, facilities, and training. A third method of euthanizing the hens, which is being studied at the University of Georgia, is to modify or dilute their air supply with carbon dioxide (CO2), nitrogen, or argon gas. These gases displace air in a container and the birds die of anoxia. Of the three gases, (CO2) is preferred for this "modified atmosphere killing" (MAK) because it induces anoxia and respiratory arrest at higher levels of residual oxygen. Therefore, less extreme dilutions are effective. Carbon dioxide also anesthetizes the birds, making them less sensitive to pain. In on-farm trials of this technique, the induction of CO2 rendered the chickens unconscious within 20 to 30 seconds and death followed within two minutes. The gas was effective at levels of 45 percent or more. ### Using an MAK Unit Producers can gain several advantages by using
modified atmosphere killing to dispose of spent hens (Figure 1). - ▼ The hens' death is guaranteed without undue suffering; - The method is technologically simple, requiring minimal training; - ▼ The equipment, a supply of CO₂ and a container, is easy to operate; and - ▼ CO₂ is relatively inexpensive. The unit must be carefully monitored to ensure that the ratio of CO₂ to air is sufficient to anesthetize the birds and shut down respiration. In the earliest trials, some of the birds in the unit were smothered. Others died as expected from anoxia, but extremely high levels of CO₂ were needed to effect this result; and some birds on the top layers (the last to be loaded) could not be dispatched by any amount of the gas, and had to be killed by cervical dislocation. Subsequent trials incorporated a number of improvements to prevent this outcome. Reduced labor costs and ease of operation are important, but the premium that producers put on being able to quickly, efficiently, and humanely euthanize these hens is reflected in all management options. ### References American Veterinary Medical Association (AVMA). 1993. Report of the AVMA Panel on Euthanasia. Journal of the American Veterinary Medical Association 202:229-249. Rich, Jim. 1994. Alternative Markets, Scheduling, Transport and Handling of Spent Hens. 1994. National Poultry Waste Management Symposium. Athens, GA. Ruszler, Paul L. Utilizing Spent Hen and Normal Flock Mortality. 1994. National Poultry Waste Management Symposium. Athens, GA. Webster, A. Bruce, and Daniel L. Fletcher. 1996. Humane On-Farm Killing of Spent Hens. Journal of Applied Poultry Research 5:191-200 Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. PMM / 8 — 9/98 POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 HUMANE METHODS FOR DEALING WITH SPENT HENS 3 Case 4:05-cv-00329-GKF-PJC Document 2132-7 Filed in USDC ND/OK on 06/02/2009 Page 21 of 76 POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 5720 Uptain Road Chattanooga, TN 37411 Tel: 423 855-6470 Fax: 423 855-6607 ((### OTHER ENVIRONMENTAL ISSUES ## SITE SELECTION FOR THE POULTRY HOMESTEAD The design and placement of poultry facilities and farmstead planning in general — are important elements in the subsequent operation and maintenance of an animal waste management system and the overall profitability of the poultry enterprise. The aesthetic value of the land and its attractiveness as a place to live are primary considerations; so, too, is knowing how to use the site wisely to control odor and dust and to protect the movement and quality of water (drainage and supply). Site selection is also an appropriate beginning for establishing a good neighbor policy. Activities during facilities construction may be subject to NPDES stormwater permitting if the total disturbed area on the farm exceeds 5 acres. Contact state agencies for specific requirements. ### Housekeeping and Appearance Properly located and well-maintained facilities will have minimal problems with odor, rats, flies, beetles, and mice. Placing the poultry house conveniently near the farm residence is useful; but the residence should remain attractive. The poultry house should be shielded (not visible) from the road, especially if it is near the setback distance to the property line; and grass and weeds should be controlled. Carefully mowed grass and well-kept lawns will reduce reflected heat in the summer, and contribute to the site's attractiveness. Unmowed grass will harbor insects, rats, mice, and other vectors that increase flock losses. The area immediately surrounding the poultry house (50 feet at least) should be closely mowed. Low bushes and trees planted too near the poultry house will also harbor pests, and restrict air movement, if small trees remain in the area, the low-growing limbs should be pruned. Building a vegetative windbreak or fence, on the other hand, will not only help the operation's appearance, it will also reduce dust and odors that might create a nuisance, or the perception of a nuisance, among your neighbors. If the house is sited within an adequate windshed, many potential air quality problems can be avoided with little on no adverse effect on neighbors and the community (see Fig. 1). Figure 1.—Siting of a typical broiler operation. ### Rainfall and Drainage As few farmsteads are located on level ground, water drainage (both surface and subsurface) is an important consideration. Even a site on relatively high ground with adequate drainage, though it is less vulnerable to flooding, road wash outs, wet litter, and disease, may require supplemental measures to handle heavy rainfalls. Good drainage coupled with an appropriate use of gutters and grading around the outside of buildings will direct runoff away from the production facility and family home. Water drainage helps ensure access to the facility at all times on all-weather roads. It also helps secure a safe drinking water supply. Using grassed outlet areas and buffer strips can help prevent runoff (and especially runoff that may have picked up waste materials from the houses, storage facilities, roads, or feed bins). Subsurface drainage, including the natural flow of groundwater and agricultural drainage tiles, must be protected during construction and in all subsequent operations to prevent excessive nutrients or other possible contaminants from entering groundwater. Dry litter storage areas exposed to the weather should be covered and have an additional barrier, such as a plastic tarp, between the ground and the litter pad or gravel. If storage structures are used, they should be built on a concrete base. Within the house itself, the removal of cake and wet litter should be part of production; waterers should be inspected for leaks; and other measures for mimimizing moisture, such as stirring, air drying, and ventilation, should be part of standard operating procedures. Foundation drains or footing drains can also be added to remove any subsurface water that might otherwise enter the house. ### Maintenance Issues Proper maintenance within the house is obviously important to lessen disease; reduce mortality, and help ensure production efficiency. Maintaining the exterior of the house is important to keeping up appearances. However, the exterior also contributes to maintaining healthful conditions in the interior of the house. Damage to siding, curtains, and roof can affect the temperature and humidity in the house, or allow for pest access. Food bins and equipment should be similarly checked and maintained in superior condition. ### Litter Storage Sites Litter storage sheds, stacks, or windrows should be convenient to the poultry house, but distant enough to reduce disease transmissions between flocks or houses. A distance of 100 feet is reasonable. Storage structures are usually 40 feet wide with a 14-to-16-foot clearance. The length varies depending on the amount of litter to be stored. Many storage sheds are three-sided — a rectangle with one end open. The interior wall should be strong enough to withstand the weight of piled litter and the force of front-end loaders. Litter stockpiles or windrows should be properly prepared before litter is laid down. If the storage time exceeds one month, a pad must be available, and the stack or windrow should be covered to reduce flies and odor problems. Litter stored on the bare earth must be completely removed to avoid creating an area in which high salinity and nitrate-nitrogen can become a potential source of groundwater contamination. Similar protective measures apply to the collection and disposal of poultry mortalities. Some traditional practices, especially open burial pits are no longer feasible and, in some places, are illegal. Alternative methods, such as incineration, composting, rendering, acid preservation, and fermentation can be used, but each of these requires appropriate structures and/or equipment. The composting structure can be conveniently attached to the litter storage facility; the incinerator is more likely to be located in a separate, outdoor area. Refer to the appropriate fact sheets on litter storage and poultry mortality management for additional material on these topics. ### Using Farm*A*Syst Tools to Make Improvements Farmers who need practical help to identify which of their practices or structures may be a direct risk to the environment or who wish to gain access to new techniques for preventing pollution can participate in Farm*A*Syst, a voluntary program supported by the Cooperative State Research, Extension, and Education Service, the Natural Resources Conservation Service, and the U.S. Environmental Protection Agency. Farm*A*Syst was specifically designed to help rural residents become knowledgeable about water pollution risks and to help them develop an action plan to correct potential problems. It is also a useful tool for site selection and general farmstead planning. Its materials include assessments of water well design and location, nutrient contamination, septic systems, pesticide and petroleum storage, household and farmstead hazardous waste and waste disposal, and other points of intersection between the facility and the environment. ### ENVIRONMENTAL OTHER ISSUES ### Conclusion Proper siting and design of a poultry facility is important to the economy and success of the whole operation. It prevents problems before they arise, thus saving the grower money, time and worry, and best of all, it protects the environment and community
from serious problems or distressing nuisances. Poultry farms that are properly designed and maintained reduce the chance of complaints, protect farm workers, and build harmony in the community. Such farms assure citizens concerned with animal welfare that the poultry grower also cares enough for animals to give them a clean and comfortable environment. The grower who maintains an approachable farmstead shows the community that being neighborly is not a defensive measure, but a natural part of doing business. ### References Brewer, R.N. 1990. The Poultry Farmstead. Poultry By-Product Management Poultry: Science. DTP Circular 11/90-008. Alabama Cooperative Extension Service, Auburn University, Auburn, AL. Donald, J.O., and J. Blake. 1990. Guidelines for Proper Sit-ing of New and Expanded Poultry Facilities. DTP Cir-cular 10/90-009. Cooperative Extension Service, Auburn University, Auburn, AL. Jackson, G., D. Knox, and L. Nevers. 1992. Protecting Rural America's Water - Farm A Syst. National Farm A Syst Staff. University of Wisconsin, Madison. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water > **POULTRY WATER QUALITY CONSORTIUM** 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 SITE SELECTION FOR THE POULTRY HOMESTEAD ### Using Regulations as Management Principles Successful farmers have always been concerned about soil and water quality. Today more than ever, achieving this goal requires not only commitment but hard work. It may be true that farmers, growers, and other producers would not usually call government regulations "helpful." However, the federal, state, and local regulations that apply to poultry and other livestock operations contain useful guidance for siting the facility and managing it properly. Regulations can include zoning rules, requirements for construction permits, site inspections by certified engineers, and filing for public notice and approval before beginning or modifying livestock facilities, particularly for large units. The U.S. Environmental Protection Agency defines a concentrated animal feeding operation (CAFO) as an operation that has more than 1,000 animal units (one animal is a 1,000 pound beef; and as applied to poultry, it is 100,000 broilers or laying hens, if there is a continuous overflow watering system; 55,000 turkeys; 30,000 laying hens or broilers, if a liquid manure system is used; or 5,000 ducks). Increasingly, however, states and counties are adding a variety of size and class distinctions to their regulations, based on local perceptions about the facility's potentially harmful effects on the environment. Other regulations usually deemed "limiting," apply to the site once operating permits have been granted. These regulations may include - ▼ restrictions on manure applications, - ▼ separation and setback distances, - ▼ recordkeeping, - operating procedures for dry and liquid waste management facilities, and - agreements establishing the conditions for transferring or decommissioning the facility. But are these rules only limitations? Most environmental regulations are a response to the public's demand for clean water and its fear that growers are not sufficiently concerned about the risks inherent in livestock concentrations. Growers are not unaware of these risks, but they also know that if their sites are properly managed, the risks are far less than perceived. Looked at proactively, zoning and permit regulations can help growers break down the public's misconceptions and fear of modern animal agriculture. Zoning can establish the right of poultry facilities to exist without resorting to public hearings for special use permits. Zoning also helps control urban sprawl; that is, it reduces the sudden appearance of highway businesses that often complain about farms that were established long before the highway was developed. Separation and setback distances may also be beneficial. They ensure a large land area for manure utilization and management, thus helping with fly and odor problems and contributing to the farm's ultimate sustainability. Deep setbacks, however, encourage livestock concentration. Once a site is found that meets setback requirements, the incentive is to put as many animals as possible on that piece of property. It is a given that as livestock facilities grow in size and concentration, so does the size of the waste stream and the number of environmental regulations. Growers will get the full benefit of the regulations' protections by participating in the rulemaking and by perceiving compliance, not as interference but as an opportunity to demonstrate their management skills to the community as well as to the regulating agencies. Thus, for example, growers required to have a written manure management plan can use the planning process to get more control over when and how they manage this product — and the more control they have, the more likely they are to use manure as an asset rather than a liability. They will, in all likelihood, review conditions in the houses that may be affecting the quality of the manure, making storage difficult, and leading to complaints about odors and flies — and even, perhaps, to bad feelings about massive land applications. Once satisfactory storage arrangements have been made, land applications can be responsibly and timely planned to achieve crop nutrient requirements. ### Using the Market to Replace Regulations Environmental regulations, their benefits notwithstanding, also have some unintended consequences. For example, statutes based on approved practices limit the growers' incentive to innovate. The cost associated with compliance (and the criminalizing of environmental neglect) actually leads to larger facilities as growers attempt to bring down their per unit costs. Even more important from this standpoint, however, is the very foundation of environmental law: the "no discharge" rule. Environmental law evolves from waste treatment theory that seeks to limit inputs. An alternative approach based on output standards would develop the waste as useful products and allow its movement out of the production area. The marketed "co-products" of the poulitry operation would then be available for application or other use as needed. The traditional uses of manure as fertilizer, feed, and energy point to the markets as a supplement, if not a substitution, for environmental regulation. As alternative waste management practices develop, growers who know the market can develop these traditional and new uses of manure, and deliver their "products" to the market biologically secure and environmentally safe. Recent law in Iowa and some other states, permits manure application laws to be relaxed if the growers' manure management plan can show that the excess has been sold and is being used responsibly. Such provisions are an indication of where management and regulations may be heading for the future. At their best, regulations are a reminder that all of us must work to prevent the unintended consequences of our activities (i.e., nonpoint source pollution) from impairing the earth's resources or putting animal and public health at risk. ### Definition of Farming Is Important It is essential that growers participate in regional and state legislative, civic, and ad hoc environmental groups. It can remind those who make regulations that "feeding, breeding, and managing livestock, including to a variable extent the preparation of these products for human use," is part of the enterprise that Webster's dictionary identifies as farming. Although commercial and industrial facilities face stricter restraints, such enterprises are usually larger and can often pass the cost of pollution prevention on to third-party customers or end users. This privilege is denied the farmer. Spotty regulations will play havoc in the market place. When compliance with regulations becomes costly in some localities, farmers are forced out of business because they cannot afford the extra expense that their competitors in less regulated areas do not incur. Again, it is essential that growers participate as environmental regulations are being promulgated. ### References Brake, J.D. 1996. Zoning for Animal Agriculture: A Proactive Stance. In Proceedings 1996 National Poultry Waste Management Symposium, P.H. Patterson and J.O. Blake, editors. National Poultry Waste Management Symposium, Auburn University Printing Service, Auburn University, AL. Daniel, C. 1996. Interacting with Local Communities and Neighbors. In Proceedings 1996 National Poultry Waste Management Symposium, P.H. Patterson and J.O. Blake, editors. National Poultry Waste Management Symposium, Auburn University Printing Service, Auburn. AL. Angela DeGooyer. 1996. Personal Communication. Confinement Feeding Operations Rules Summary. Prepared as a Member File Folder. Iowa Poultry Association, Ames, Iowa. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. OEI / 2 — 9/98 POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 USING REGULATIONS AS MANAGEMENT PRINCIPLES ## Air Quality and Its Management The Clean Air Act of 1955
established specific National Ambient Air Quality Standards (NAAQS) for six compounds: carbon monoxide, ozone, particulate matter, sulfur dioxide, nitrogen oxides and hydrocarbons. Subsequent reauthorization and amendments (especially in 1970) provided for uniform air quality standards and control of emissions from existing facilities. That is, the regional U.S. Environmental Protection Agency offices or individual state regulatory agencies must monitor air quality, and design and implement plans to improve air quality to NAAQS-levels. The Clean Air Act Amendment of 1990 (Pub. Law 101-549) also included several provisions of concern to producers of agricultural products. The most immediate of these concerns are the contribution of manure decomposition to ammonia emissions and the impact of manure handling on fugitive dust. ### Particulate Matter Particles of solid or liquid material suspended in air can cause eye and throat irritation and hamper visibility. To date, the air quality standard for particulate matter (PM) concerns compounds above 10 micrometers (µ) in aerodynamic diameter or PM10. Regulation is pending, however, to set the standard at PM25. This new rule, originally drafted to take effect in the summer of 1997, received widespread criticism and was not enacted. If or when it is enacted, ammonium nitrate — which is created by photochemical reaction between ammonia and nitric acid — will become a larger part of the total problem since the resulting particles are larger than 2.5u. Reducing the formation of particulate matter benefits air quality — and everyone benefits from cleaner air. So even without regulations, growers will likely do whatever they can to reduce ammonia emissions, that is, to reduce the moisture content of litter. Indeed, they have — sometimes for other reasons — already adopted management practices that will help achieve this goal, such as maintaining waterers in good condition, applying alum treatments to litter (i.e., bedding materials), and composting litter and mortalities. Technological controls, such as installing equipment to scrub ammonia before the air is vented from buildings, may be more costly than the problem warrants. Some technological controls may be helpful; however, care should be taken to ensure that a technology devised to control a specific problem, such as the generation of methane gas, is not expected to remedy other problems. For example, covered lagoons will not do much to solve the fugitive dust problem. It is important for growers to be aware of regulatory concerns and evaluate their management practices and prospective technologies holistically. The best practices are effective, economical, and do no harm to the environment. ### **Gaseous Emissions** Goals of the 1990 Clean Air Act include reducing emissions to the air that cause acid rain and protecting stratospheric ozone. Thus, ammonia (NH₃) volatilization from animal and other agricultural operations is subject to increased scrutiny. A variety of gases are generated during the decomposition of poultry wastes. Under aerobic conditions, carbon dioxide (CO2) is the principal gas produced; under anaerobic conditions, the primary gases are methane (CH4) and (CO2). About 60 to 70 percent of the gas generated in an anaerobic lagoon or pit is methane and about 30 percent is (CO2). Trace amounts of more than 75 other volatile compounds have been identified from degrading animal waste, including mercaptans (the odor generated by skunks and the smell introduced in natural gas are in the mercaptan family), aromatics, sulfides, various esters, carbonyls, and amines. ### Methane, Carbon Dioxide, Ammonia, and Hydrogen Sulfide The gases of most interest and concern in poultry waste management are methane, carbon dioxide, ammonia, and hydrogen sulfide. The following paragraphs summarize the most significant characteristics of these gases. ▼ Methane. Methane gas forms during the breakdown of animal wastes, if the decomposition process is anaerobic. Because methane is quite explosive, extreme care is required when attempting to generate and capture this gas for on-farm use. Further, methane emissions from "rice and livestock production" and from "all forms of waste management . . . including storage, treatment, and disposal" are specifically mentioned as a concern in the 1990 Clean Air Act. Methane accounts for about 18 percent of the greenhouse gases that contribute to ozone depletion. ▼ Carbon Dioxide. Carbon dioxide can be an asphyxiant when it displaces normal air in a confined facility. Because CO₂ is heavier than air, it remains in a tank or other well-sealed structure, gradually displacing the lighter gases. With high-density housing, gas and particulate levels may increase, and control becomes more difficult. Carbon dioxide can increase substantially inside the poultry house, depending on the number of birds producing it. Continued monitoring of temperature, air removal rate, and manure moisture content is required to maintain proper carbon dioxide concentrations. ▼ Nitrous Oxide and Ammonia. Ammonia is primarily an irritant and has been known to create health problems in animal confinement buildings. Irritation of the eyes and respiratory tract are common problems from prolonged exposure to this gas. It is also associated with soil acidification processes. Ammonia concentration in broiler houses has increased in the past few years. The primary reason is that ventilation rates are reduced to conserve heat in the winter months. Research also shows that dust particles serve as an ammonia transport mechanism, so venting to the outside may lead to odors near the house and contribute to overly dry litter inside the house. Ammonia concentration increases with increasing pH, temperature, and litter moisture content. It is desirable to maintain litter moisture in a production house below 30 percent for ammonia control. Studies indicate that ammonia increases bird susceptibility to Newcastle disease and decreases feed intake and egg production. Nitrous oxide is produced during the breakdown of nitrogen fertilizers in soil, animal wastes, and nitrate-contaminated groundwater, although its major source is the burning of fossil fuels. Nitrous oxide accounts for about 6 percent of the greenhouse gases related to human activity. ▼ Hydrogen Sulfide. Hydrogen sulfide is deadly. Humans and farm animals have been killed by this gas after falling into or entering a storage tank or building in which a storage tank was being agitated. Although only small amounts of hydrogen sulfide are produced as compared to other major gases, this gas is heavier than air and becomes more concentrated over time. Hydrogen sulfide has the distinct odor of rotten eggs. Hydrogen sulfide deadens the olfactory nerves (the sense of smell); therefore, even if the smell of rotten eggs appears to have disappeared, an area may still be contaminated with this highly poisonous gas. Forced-air ventilation or an exhaust system helps prevent gas poisoning. Otherwise, evacuate the area until the gas can be removed. Methods used to capture and treat these gas emissions will have the additional ad- ### NVIRONMENTAL vantage of reducing odor. They include the use of covered storage pits or lagoons, soil adsorption beds and filter fields, and applying litter with soil incorporation. Technological controls are possible, for example, installing packed bed scrubbers in the poultry house or composting area (or wherever the manure is processed. Newer methods include burning the manure to produce energy, which is discussed in AT/2. ### Issues Not Directly Related to Air Quality Nuisance issues, odor, flies, dust, and noise are generally regulated at the state or local level. They can be, but are not usually related to air quality standards, even though many citizen complaints and civil suits brought against livestock and poultry operators may reference such standards. These problems are more often related to improper or mismanaged burial pits, emissions from incinerators, and land applications of poultry waste. They are intensified by increasing urbanization, unanticipated adverse weather conditions, and specific, often seasonal, activities in the production cycle. Other fact sheets in this handbook deal with these potential problems. ### Where to Go for Help Information on achieving air quality standards and managing air quality problems related to poultry production facilities is available from the U.S. Department of Agriculture, U.S. Environmental Protection Agency, and the U.S. Department of Energy. Poultry associations and state water quality agencies can also help. ### References - U.S. Department of Agriculture. 1992. Agricultural Waste Management Field Handbook. AWMFH-1. Soil Conservation Service, Washington, DC. - Barker, J.C. 1988. Poultry Layer Production Facility Manure Management High Rise, Deep Pit. EBAE 131-88. North Carolina Agricultural Extension Service, Raleigh. - Carr, L.E., F.W. Wheaton, and L.W. Douglas. 1990. Empirical Models to Determine Ammonia Concentrations from Broiler Litter. Transactions of the American Society of Agricultural Engineers 33(4):1337-42. - Kling, H.F., and G.O. Bressler. 1974. Gas and Particulate Lévels in Sloping Wire Floor Poultry Houses. PR 342. Agricultural Experiment Station, Pennsylvania State University, University Park. - Morse, D. 1996. Understanding Fugitive Dust and Ammonia Emissions. In Proceedings 1996 National Poultry Waste Management Symposium, ed. P.H. Patterson and J.O. Blake. National Poultry Waste Management Symosium, Auburn University Printing Service, Auburn University, AL. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and
adopt prudent uses of poultry by-products that will preserve the quality of water OEI / 3 -- 9/98 for everyone. **POULTRY WATER QUALITY CONSORTIUM** 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 AIR QUALITY AND ITS MANAGEMENT 3 # Controlling Odors — Multiple Purpose Management Until the 1950s, many small poultry farms were in rural areas and produced fresh meat for city dwellers. The owners were backyard producers or family farmers (like your parents or grandparents) who raised chickens for their neighbors to bake or fry on Sunday. But the demand for chickens and eggs grew rapidly, and an assembly line model of continuous poultry production and processing raised the stakes. Now breeder and hatchery operators, feed mills and chicken processing plants are "integrated" — owned by a single company — and the backyard farmer has retired. The farmer now contracts with the integrator to grow thousands of chickens under controlled conditions. No sooner were these changes underway when a second trend developed: the migration of many nonfarming residents to settle in rural areas. The collision of these trends in the same watershed — that is, the concentrated animal feeding operations of today's farms and a burgeoning rural population — can lead to mutual misunderstandings. The community often feels that growers are making their lives unnecessarily pungent; and growers, many of whom have been there longer than the town, feel much maligned. Both sides have valid concerns. ### A Confusion of Complaints Concentrated animal feeding operations, as many livestock farms are called, have come under considerable scrutiny. One reason for the attention is concern for the animals' welfare. In fact, chickens and turkeys maintained in a well-managed poultry house can be as comfortable as those raised outdoors, and may be freer of disease. Veterinary doctors, university faculty, and growers are not likely to abandon their responsibility or respect for the animals, simply because they have moved them indoors. Birds must be kept comfortable, and the wise grower does not forget the birds themselves, who by their behavior speak eloquently of their condition: they huddle when cold, pant and flap their wings when hot; and migrate to better areas if the problem is localized. The grower who cares about the birds will be a frequent visitor in the poultry house, coming and going at odd hours to monitor conditions (such growers will not, however, disturb the birds when it is very hot). The condition of the litter is another indicator of bird comfort - as are temperature, humidity, air flow patterns and speed, ventilation cycles, and gaseous air contaminants. Many of these indoor indicators require engineering systems and mechanical monitoring. For example, growers may want to use a negative pressure system to bring outside air into the poultry house. The goal is to maintain the right static pressure and adjust the air inlets so that fresh air comes in high, shoots to the middle of the house, and stays high as it moves toward the center aisle. If it is properly mixed with the in-house air before it flows over the birds, it will help control odor and prevent cold air from flowing directly over the birds. Human health and the environment are likewise of great concern to growers. Concentrated animal feeding operations can generate as much or more waste as an urban population, and agricultural runoff does not, like some other wastewater discharges, pass through a treatment plant. Environmentally sound animal waste management is, then, an urgent, but by no means impossible, priority. Growers who use best management practices to ensure proper waste management — from collection and storage to composting to land applications and value-added processing (e.g., to sell as a feed ingredient, fertilizer, or soil amendment) — will not be polluters and their facilities will not produce intolerable odors. ### Tackling Odor Head on The basic complaint associated with concentrated animal feeding operations is odor. Even though odor is generally more irritating than dangerous, it often evokes outrage from neighbors. Many growers, who may previously have ranked odor among the least pressing of their problems, are now encouraged to make it a priority. Odor, like flies, is ubiquitous and unlikely to be totally eliminated. But it can be controlled. Wherever strong odor is a problem, the most recent tendency is to treat it as a pollutant and quite possibly to find the grower in noncompliance with regulations. Odor may be endemic to feed lots, houses, litter storage facilities, lagoons, and land applications, but its strength, or nuisance quotient, depends on site-specific conditions and management procedures, such as location, sanitation practices, season, climate, time of day, and wind direction and speed. Having an appropriate poultry waste management system is essential, and the most useful odor prevention measures are therefore found throughout the factsheets included in this handbook. Litter is a naturally occurring biodegradable waste. Ammonia and other nitrogen compounds and some gases generated in the decomposition process are the primary sources of the offending odor. If the decomposition process occurs in the presence of sufficient oxygen, few odors are produced. However, anaerobic decomposition produces many odorous and some dangerous gases. At least 75 odorous compounds can be produced in the decomposition process, including, for example, volatile organic acids, aldehydes, ketones, amines, sulfides, thiols, indoles, and phenols. For this reason, it is good management to store litter in a covered, dry stack facility, and to follow spreading by a method of incorporating the litter into the soil. Properly applied litter increases plant growth and contributes to natural nutrient recycling (see PWQ/3) with no environmental damage and little odor. ### **How Odor Affects Us** The physiological sense of smell, which is perhaps never as keen as sight or hearing, can vary as much as a thousandfold from person to person, and can be affected by age. Thus, for example, children under age 5 seem to like all smells; children over 5 do not; though one's sense of smell decreases with age. At age 20, people have 80 percent of their physiological sense of smell; at age 80, about 28 percent. Other things that make a difference in one's sense of smell are smoking habits, allergies, and head colds. Behavioral responses to odor are equally diverse. Some individuals can be genuinely unaware of odors that are a nuisance to others. In addition, ammonia and hydrogen sulfide should be monitored since both suppress the sense of smell. Odor fatigue makes it impossible to smell certain odors, while simple adaptation also accustoms one to certain smells. However, studies to determine the effects of odor on people living near confinement facilities or on farms where litter is managed show that olfactory receptors renew themselves every 30 days; that frequency and duration are weather related, and that odors can definitely affect people's moods and nervous systems and cause depression and nausea. Within these limits, it is possible for individuals to sense the presence or absence of an odor — even when they cannot quantify its five basic properties: intensity, degree of offensiveness, character, frequency, and duration. The more accustomed we are to odors; the higher the threshold must be before we detect them. ### **Updating Standard Practices** As good management is the key to controlling odor, so keeping up with new developments is important for all managers. New developments are part technological breakthroughs and part trial and error; and many of them have been discovered by farmers solving real life problems. Consider, for example, the growers' concern for the birds' welfare and for controlling odor. Choices that the grower makes before and during production, for example, about which bedding material to use and what diet to feed the birds, may contain some of the trade-offs the grower is looking for. Some growers report that they have gotten good results — better flock health and less odor — by using recycled paper, leaves or other green manure as an alternative to straw bedding material. Others have found that the addition of phytase to the birds' diets helps reduce both ammonia volatilization and odor since the more efficiently the chickens use phosphorus, the less they have to excrete. And, as the long-term effect of this choice may well be that less phosphorus is available for land applications, the grower who uses phytase obtains a three-way trade: less nuisance odor, less environmental damage, and better bird performance. Other management choices for laying operations that reduce odor, contribute to the flock's performance, and protect the environment include flushing the houses with clean water, keeping the waterers in good condition, and drying the manure. The use of separation and setback distances, riparian and other buffers and windbreaks, and restrictions on land applications on frozen ground or when rain is predicted — also help control odor and contribute to the growers' bottom line and reputation for good citizenship. Above all, growers should not try to cover up odors by putting their heads in the sand, blaming other farm sites, or thinking of their neighbors as city slickers unused to earthy smells. Nor should they rely on the other kind of cover up: the one that uses chemicals or other additives to mask the odor. Most of the claims for commercial products are still unconfirmed. Here, then, is the fundamental principle: Know the causes and cures. Unless growers know how odors are generated; that is, the factors producing them, they cannot know what control practices can be used to counter their effects. Once we have a grip on the causes, four basic strategies are available. Of most importance, prevent odor
from developing in the first place. It bears repeating: locate the poultry facility away from other farm buildings and residences, - handle litter in a dry state as much as possible, and remove all mortalities and broken eggs, and spilled feed immediately. - Alter the unpleasant smells by chemical or microbiological treatment. That is, use a collection and storage treatment that can include drying the litter, composting, anaerobic digestion, and disinfection. - Contain the odors; prevent their escape into the atmosphere by regular washdowns for layer operations to minimize dust and feathers, and by using well-maintained waterers, good ventilation equipment, and bedding materials that repel moisture. - Disperse and dilute odors once they do escape into the atmosphere. For example, consider the wind direction and other weather conditions before applying litter, and plant or take advantage of natural windbreaks, riparian forests or buffers, and injection or other soil incorporation methods to reduce the odor associated with land applications. In addition, exhaust fans can be pointed away from other buildings or down to the ground so that stale malodorous air is deflected into the ground near the housing facility. Methods used to capture and treat gas emissions are needed to protect air quality and to reduce odor. They include the use of covered storage pits or lagoons, soil adsorption beds and filter fields, and appropriately planned land applications. Odors associated with toxic gases are protective; noxious smells, on the other hand are a nuisance and leave us feeling unprotected. The former trigger safety precautions; the latter, evoke the strongest possible repugnance, and may increase rather than decrease now that scientists are coming up with ways to measure odor. Adjudicating claims between noses is a risky business. However, growers are not alone in this effort. Assessments of on-farm conditions can be a helpful management tool and a powerful support in contested cases. Local, state, and federal natural resource agencies, the USDA Natural Resources Conservation Service, and the Cooperative Extension Service can help growers assess their management systems, prepare appropriate resource management plans, CONTROLLING ODORS: MULTIPLE PURPOSE MANAGEMENT 3 and learn how to maintain simple, but sufficient records to show that their operations are effectively managed to prevent both odor and environmental contamination. ### Conclusion The best way to deal with odor problems is at the beginning of the production cycle and through a commonsensical approach. The problems have mundane origins; they may be related to improper or mismanaged burial pits, emissions from incinerators, or land applications and intensified by increasing urbanization, unanticipated adverse weather conditions, and specific, often seasonal, activities in the production cycle. Other fact sheets in this handbook deal with these practices. Simultaneously, however, the chemical basis of odors, variations in detection thresholds, and differences in the degree of offensiveness make it imperative to handle the problem of odor via litter management and public relations. Attitudes must always be taken into account since odor is better accepted by individuals who see the grower as a friend, community member, and neighbor. Protecting natural resources and improving relationships may be the long-term solution to abiding in the same watershed. ### References - Council for Agricultural Science and Technology. 1997, May 27. Integrated Animal Waste Management. http://www.netins.net/showcase/cast/watq_sum.htm (November 2, 1997). - University of Minnesota. 1997, March 1. Strategy for Addressing Livestock Odor Issues. Feedlot and Manure Management Advisory Committee's Livestock Odor Task Force Report and Recommendations https://www.bae.umr.edu/extens/manure/lotfr.html (August 11, 1997). - Powers, Wendy. 1994. Odor Abatement: Psychological Aspects of Odor Problems. National Poultry Waste Management Symposium, Athens, GA. - Sweeten, John. 1994. Odor Abatement: Progress and Concerns. National Poultry Waste Management Symposium, Athens, GA. - U.S. Department of Agriculture. 1992. Agricultural Waste Management Field Handbook. AWMFH-1. Soil Conservation Service, Washington, DC. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. OEI / 4 — 9/98 POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 4 CONTROLLING ODORS: MULTIPLE PURPOSE MANAGEMENT ## PREVENTING FIRES IN MANURE/LITTER STORAGE STRUCTURES structures have been built as a component of a total waste management program on the poultry farmstead. Storage facilities help prevent the possibility of water pollution and provide flexibility in the timing of land applications. They also protect this resource from the weather and wildlife so that it can be used as a fertilizer or cattle feed. Manure piles will generate heat, however, and care should be taken to prevent fires in the storage facility. Spontaneous combustion in a litter stack is possible, probably as a result of the buildup of combustible methane from the storage of wet and dry litter. Fires may also occur if the manure is stacked too close to wooden walls that may ignite when the temperature in the litter reaches the wood's flash point. The exact causes of litter storage fires are difficult to know, but good management principles will help protect the litter and reduce the risk of fire. ### Methane Production Anaerobic bacteria generate about 50 to 65 percent methane, about 30 percent carbon dioxide, and a smaller percentage of other gases. If the moisture content of stored litter is more than 40 percent in a stack with little or no oxygen, then conditions are right for anaerobic bacteria to grow and methane to result. Unvented landfills have the same problem. Methane's specific gravity is less than air, however. If the stack has adequate pore spaces (or the landfill has ventilation pipes), the methane will escape into the atmosphere. High moisture levels in stored litter help create the potential for fires, as does layering the manure (putting new litter on top of old litter). Compacting the litter will trap heat in the pile, and failure to provide an adequate ratio of surface area to volume can also create problems. ### Tips for Fire Prevention The following guidelines will help prevent fires in storage facilities: - Keep the litter dry and do not stack it too near the open end of the building where it is more likely to get wet (methane is flammable in air). - ▼ Do not compact moist cake or mix it with dry litter; and do not stack cake or dry litter higher than 5 feet or store it against the wood. - Do not compact the dry litter, since compacting creates anaerobic conditions and prevents the natural venting of methane. - ▼ Do not cover moist litter but allow the litter to vent naturally. - ▼ Monitor the resources in your storage facility regularly, and remove any materials that have temperatures greater than 180 °F. If the temperatures exceed 190 °F, notify the fire department and prepare to move the material. Emptying the storage area will bring the litter out into the air, so precautions must be taken against a fire occurring at this time. It is a good idea not to store expensive equipment in the litter storage facility. If you are storing dry litter for later use as a cattle feed, cover it with polyethylene. This technique will suppress the temperature buildup and reduce the production of bound nitrogen, a form of protein that cattle are unable to digest. ### References Soil Conservation Service. 1993. Preventing Fires in Litter Storage Structures. Guide AL-39 in Alabama Poultry Waste Management: Waste Utilization and Facility Design Workbook. U.S. Department of Agriculture, Auburn, AL. Donald, J.O., and J.P. Blake. 1995. Preventing Fires in Litter Storage Structures. Circular ANR-915. Alabama Cooperative Extension Service, Auburn University, AL.[check ref., may be same as first one.] Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. OEI / 5 — 9/98 POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 2 PREVENTING FIRES IN MANURE/LITTER STORAGE STRUCTURES ## CONTROLLING STRUVITE BUILDUPS agnesium ammonium phosphate, sometimes called struvite, is a grayish-white crystalline salt that builds up on the internal pump and piping surfaces used for lagoon liquid recycling. It usually appears on metallic surfaces but can also form on plastics. Steel, cast iron, bronze, and brass are equally susceptible. Struvite usually builds up on the internal pump components first, then moves outward to the discharge pipes. It often occurs at pipe joints, elbows, valves, or imperfections because microscopic grit and solids tend to lodge at these points, providing a base for the salt to grow. Predicting struvite is difficult because its cause is not well known. Design, maintenance, and management techniques have been researched
that can reduce the buildup to acceptable levels. #### Pumping and Piping System Use only high-quality, low-pressure, self-priming centrifugal or submersible pumps. They should not be oversized in relation to the piping network, and should perhaps be on a timer. The suction pipe should also be large enough to prevent pump cavitation. Normally the suction pipe diameter should be one size larger than the discharge pipe. Locate the pump close to the high-water level to minimize suction lift. Replace fine mesh suction intake strainers with wire screens or baskets of 1-inch mesh or larger. The diameter should be at least five times the diameter of the suction pipe. Struvite will also build up on the screens. Use nonmetallic pipes and fittings. Pipes should be large enough to maintain flow velocities between 3 to 5 feet per second; the minimum pipe diameter at any point except at the immediate discharge point should be 1.5 inches. Sharp pipe bends (elbows and tees) should be avoided. Instead, use flexible plastic pipe and long sweep elbows for the direction changes. The system (pumps and piping) should have sufficient capacity to work only one-half to two-thirds of the time, and piping systems not in continuous use should be drained between pumping events. #### **Electrostatic Charges** Stray voltage is also believed to contribute to struvite. Direct grounding of the pump housing can discharge any static charges. A metal rod should be placed 10 to 12 feet into the moist soil near the lagoon's edge, and cable connections at the ground rod and pump should be checked periodically for corrosion. #### Lagoon Management Lagoons should be properly sized. New ones should be charged at least half full of water before startup, and the liquid level should be brought up to design levels as soon as possible. Rainfall during normal years dilutes lagoon liquid while extended periods of hot, dry weather increase nutrient and salt levels and the rate of salt buildup in recycling systems. Flushing with fresh water or irrigating with a portion of the lagoon contents may help. #### Acid Cleaning Salts can be dissolved with dilute acid treatments. Several doses followed by flushing the spent acid solutions will be needed to treat heavy buildups. A more thorough and more costly method is to install an acid recirculation loop. Use a 150-gallon acid-resistant tank as the reservoir. You will need enough solution to fill the pipe length and some in reserve to keep the recirculation pump primed. Use the accompanying table to determine how much acid you will need. Table 1.—Amount of solution needed for acid cleaning using an acid recirculation loop. | DIAMETER OF PIPE
(INCHES) | SOLUTION NEEDED
PER FT OF LENGTH
(GALLONS) | |------------------------------|--| | 1.0 | 0.06 | | 1.5 | 0.13 | | 2.0 | 0.20 | | 2.5 | 0.29 | | 3.0 | 0.43 | | . 4.0 | 0.70 | | 6.0 | 1.53 | To reduce the size of the tank, isolate sections of the line with valves and circulate the acid through only one section. The flush pump suction is switched from the lagoon and connected to the bottom of the acid tank with a quick-connect coupling. A 1-inch line returns acid from the end of each treated pipe section to the tank. Hydrochloric acid can be purchased at most chemical supply houses or paint stores. Dilute the acid with water on a 1 to 9 ratio — 1 gallon acid to 9 gallons of water. Use caution. Mixing acids with water is a hazardous operation. Partially fill the tank with water, then add the acid slowly to the water. Eye protection is essential, and heat will be generated. To treat heavy struvite buildups, recirculate the mixture overnight and count on using the mixture only once. Spent acid may be dumped into the lagoon. Acids currently cost about \$14 for a 15-gallon drum or about \$33 for a 50-gallon drum. Deposits on the drums are \$25 and \$50, respectively. #### References Barker, J.C. 1981. Crystalline (Salt) Formation in Wastewater Recycling Systems. EBAE 082-81. North Carolina Agricultural Extension Service, North Carolina State University, Raleigh. Payne, V.W.E. 1993. Personal Communication. U.S. Department of Agriculture, Soil Conservation Service, Aubum, AL. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poutry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 2 CONTROLLING STRUVITE BUILDUPS ## PROTECTION AGAINST PESTS, PREDATORS, AND DARKLING BEETLES Pests are vectors because they may be a point of entry for disease or other nuisances in the poultry house. They are also an aspect of waste management that should not be overlooked. Vectors can be either living or nonliving carriers of disease. Especially troublesome on the poultry farm are house flies, rats, and darkling beetles. Wildlife, especially feral dogs and coyotes, must also be controlled. Having proper waste management facilities and maintenance procedures on the farm will contribute to productivity, nutrient management, and environmental safety. A cost-effective and safe pest control system is essential. Uncontrolled pests cause irritation to birds and workers, carry poultry disease pathogens, increase mortality, lower carcass grades and production, damage building materials, and interfere with feed conversion. In addition, and if they did nothing else, poultry pests must be carefully controlled because they can migrate from litter to nearby residences, where they may become a serious nuisance among the neighbors. #### Rats and Mice Voles, field mice, and cotton rats are not usually the source of problems for poultry growers. Norway rats and roof rats, however, are two non-native species of rats that can be trouble-some — and they proliferate rapidly. A pair of rats will produce six to 12 young in 21 days — and each of these becomes sexually mature in three months. A single pair of rats, if they find food, water, and shelter, can produce a colony of 640 rats in a year. Poultry houses provide everything the rats need: food, water, and shelter. Norway or wharf rats usually nest under buildings and concrete slabs and in garbage dumps. They are great burrowers and may have an extensive system of burrows under the poultry house, with several escape routes. They eat anything but prefer nuts, grains, meats, and some fruits. They can easily find meats and grains in the poultry house. Roof or black rats are more aerial than Norway rats. They enter buildings from the roof or utility lines. They usually live in trees, so access to the poultry house is easy: up the walls, across vines, along pipes. Exterior walls should be hard, flat surfaces, and all entrance holes should be plugged up. Rats can make themselves "paper thin" to come in under doors and through holes as small as one-half inch in diameter. The best rat control program is proper resource management, maintenance, and sanitation; but the food supply in the poultry house makes rat occupation probable. Some chemical controls or rodenticides may, and probably should be, added to your control program. To administer rat poison effectively, first know how many rats you are dealing with; then, establish bait stations near the walls in areas of rodent activity. To determine how many rats are in the poultry house, observe the area at night as well as in the daylight. Rats are nocturnal; if you see no rats in the day or at night, there probably are not many around. If you see old droppings or gnawed areas, no rats during the day, and only a few at night, rats are probably pre- sent in medium numbers only. Finally, if you see fresh droppings and tracks, some rats during the day, and three or more at night, large numbers are probably present. To control the infestation, use single or multiple doses of a rodenticide in the bait stations. Avoid making the rats sick; if they get sick and do not die, they will become bait-shy and not eat the poison. Place the bait stations appropriately and protect them from moisture, dust, and weather to encourage the rats to eat from these stations. Rats, like many animals, prefer fresh food. Because rats are colorblind and have poor eyesight, rodenticides can be marked for safety. If other conditions make poisons inadvisable, rats can be trapped with common snap traps, glue boards, or in live traps. #### Darkling Beetles Known as litter beetles, lesser mealworms, or "black bugs," the darkling beetle (Alphitobius diaperinus) is found in large numbers in poultry houses, in the woods, and around feed bins. These black or reddish-brown beetles are troublesome in turkey and broiler production because deep litter and open-floor housing provide an ideal habitat in which the beetles can survive and reproduce. The total effect of darkling beetles on poultry production is not known. They may be more problematic as a nuisance than as a vector (carrier of disease). However, beetles are thought to harbor a number of disease organisms — for example, fowl pox, E. coli, Salmonella spp., Newcastle disease, and avian leukosis — and to be involved in the transmission of the causative organism for Marek's disease, although immunization against Marek's disease is now available. Darkling beetles are also an intermediate host for poultry tapeworms and cecal worms. If they are in litter that is land applied, their possible effects on wildfowl must be considered. An undisputed second concern related to the darkling beetle is that they can damage the insulation in poultry houses. Larvae bore into the insulation to find safe places to pupate.
But adult beetles who eat the pupae soon enlarge the larval tunnels in their search for an easy meal. Birds and mice then claw at the insulation to get at the adult beetles, larvae, and pupae. In a severe darkling beetle infestation, as much as 25 percent of the insulation can be lost in a single year. Another potential problem arises if infested litter is spread on crops. Adult beetles may migrate from the field into nearby residences; the result can be a nuisance complaint to the health department — and sometimes lawsuits. Temperature and moisture affect the amount of time an insect needs to complete its life cycle. Temperatures between 60 and 100 °F and moisture levels above 12 percent are optimum for its survival. Food sources, decaying litter, an occasional bird carcass, and the absence of major predator and parasite complexes in the poultry house help the beetle population to increase. The life cycle of the beetle takes 35 to 60 days to complete. The adult female lays eggs individually or in clusters at intervals of one to five days throughout her life cycle. The eggs hatch into tiny larvae after four to seven days and grow through five to nine stages, called instars. This period lasts for seven weeks; then the beetles pupate in cracks and crevices, in the soil and lower strata of the litter, and in building insulation. The pupal state lasts for seven to 11 days, after which a new adult emerges. To manage darkling beetles effectively requires monitoring, cultural practices, and some insecticide applications. Treatment should be maintained regularly, even if beetle numbers are low. Individual beetles or larvae (100 or fewer per house) pose no problem; however, their presence indicates a need for continued monitoring, ideally on a weekly basis, from the time the birds are brought into the house until they are removed. Visual inspection is the best way to monitor the open-floored, deep litter house. The grower should look at litter, carcasses, cracks and crevices, equipment, and insulation at intervals of 30 to 40 feet throughout the house. - ▼ Litter should be examined along walls, around support posts, and under brooder hoods and feeders. Dig down 1 to 2 inches in caked litter to look for small, early instars. - Keep litter dry and consider using recycled paper as the bedding material. Some recy- cled paper is treated with boric acid that creates a fog when first applied. The fog settles in about two hours. The litter can be replaced after the third flock each year, but no other treatment for darkling beetles should be necessary (i.e., when using the boric-acid treated recycled paper litter. - Carcasses should be examined during daily collections. A large number of beetles on a large number of carcasses may point to a heavy infestation. - Equipment and cracks and crevices are favorite beetle habitats. Be sure to check the framing joints and other cracks as well as the brooder guard, house dividers, drinkers, and feeders. - ▼ Insulation in new houses should be checked for clusters of small holes along seams, in corners, at the eaves, and along the gable. Insulation board may also be discolored. If mice damage appears, look also for beetle tunnels. In older houses, it will be hard to distinguish between old and new beetle damage. Trapping beetles has also been used to control their numbers. Traps can be made using a 2-inch schedule 40 PVC pipe, a 10-to-12-inch section for each trap. Put a roll of corrugated cardboard (brooder guard) inside the pipe, and place six or so traps between the wall, feeder, and brooder locations from one end of the house to the other. To prevent the birds from moving the traps, stake the traps in place. Remove the cardboard and count the beetles on a weekly schedule. Their presence or a rapid rise in their number indicates a need for treatment. Cultural methods for controlling beetles are nonchemical ways to reduce the pest population. Cold weather is the most effective measure, and proper litter handling is also an essential for good control. If the weather cooperates, open the house to the cold between flocks. If the temperature drops below 30 °F, all stages of the darkling beetle will die. As soon as the birds are moved, the grower can remove litter and litter cake from the poultry house. Darkling beetles will move to protected areas in the empty house within a few days; therefore, moving the litter before that time will more effectively control the beetle population. Fresh litter that is applied to cropland should be incorporated to prevent any return of the darkling beetle. Stockpiled or composted litter should be turned every two weeks to promote enough heat to kill beetle eggs and larvae. Although all insecticides registered as controlling darkling beetles will work, none controls the house for more than one flock. Therefore, a treatment program should be maintained year-round. Most products remain active about a week and are designed to be applied when the birds have been removed from the house. The best time for application is on the first day after the birds have been removed followed by cleanup immediately on the second day. Treating the house again — and its outside perimeter — just before the placement of a new flock, is also useful. Surface sprays, dusts, and baits are available for making these applications. Beetles love temperatures between 70 and 90 °F; they are nocturnal and can be found everywhere. Seeing them during the day is a sure sign of infestation — of their presence in great numbers. Young chicks will eat them. Darkling beetles can fly up to one mile a night. If a million or so are taken from a house, 15,000 of those taken will return in the direction of the house from which they came. Approved insecticides are Rabon, Sevin, and boric acid compounds. Best control methods are careful cleanout and spraying. Beetles cause reductions in feed conversions and weight gains, and possible disease. Under dry conditions, they will eat the flesh of dead or down birds, and at night crawl up the feathers of resting birds and bite the skin around the feather follicals. Bitten birds may have weeping skin lesions or pink and swollen areas around the feather follicals that resemble skin leukosis. The birds are forced to wander all night instead of eating and sleeping as they would in properly managed houses. Darkling beetles are a general nuisance because they are attracted by light; therefore, they will crawl out of the litter and move toward the light at night. Large numbers of beetles on or in houses create a negative public image and give rise to complaints against the broiler producer. To prevent migration, spray the house walls and posts, or use well-sealed, angled, metal flashing attached to pit walls at posts and masonry frame wall joints. #### Coyotes and Feral Dogs Coyotes and feral dogs are opportunistic feeders. If they live in the area, their presence around a poultry house is not remarkable. They will kill the poultry for food, but they can easily be prevented from gaining access to the house. Complete confinement of the poultry is the best way to stop predation. Heavy wire should be used to cover all openings. Sanitation and the proper disposal of mortalities will cut down on the attraction of coyotes to the area. Predator calling and shooting may be used in most states to harvest these animals. Predator calling is a mechanical device that attracts the animals within shooting range. Trapping is also an effective control method. Traps and trap sizes as well as hunting and trapping seasons may be regulated in some places. Leghold traps that do not harm the animal or traps with padded jaws may offer the best control in some situations. Controlling animals and pests in poultry houses involves a combination of resource management, sanitation, and exclusion, and some special measures such as chemicals, hunting, or trapping. #### References Arends, J. No date. Darkling Beetle Control Using Disodium Octaborate Tetrahydrate (Red Zone). North Carolina State Newsletter. North Carolina Extension Service, Raleigh. Armstrong, J.B. 1990. Rat Control in Poultry Houses. DTP Circular 12/90-016. Cooperative Extension Service, Auburn University, Auburn, AL. ——. 1990. Controlling Coyotes and Dogs Around Poultry Houses. DTP Circular 12/90-017. Cooperative Extension Service, Auburn University, Auburn, AL. Gall, A. 1980. Are Lesser Mealworms Worth the Trouble They May Cause. Poultry Digest 39(456): 76-77. Pennsylvania State University. No date. Darkling Beetles, and Pest Management Recommendations for Poultry. No signatures. Lancaster, PA. Skewes, P.A., and J.L. Monroe. 1991. Research Note: The Effects of Darkling Beetles on Broiler Performance. Poultry Science 70:1034-36. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. OEL 17 — 9/98 POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 4 PROTECTION AGAINST PESTS. PREDATORS, AND DARKLING BEETLES ## Protection Against Pests — Controlling Flies For a growing industry in a rapidly changing environment, the presence of pests is an ongoing concern that readily appears — numerous species of flies can breed in litter and manure, come to maturity (some in as few as seven days; most in two weeks), and disperse up to a mile or more from their breeding place. Manure handling systems must be carefully managed to prevent these annoying creatures from spreading disease (always a serious problem) or becoming a public nuisance and a focus for bad feelings. #### Identifying the Enemy
Moist litter is not only a threat to surface and groundwater; it is also an ideal breeding ground for flies. Caged layer operations are the most susceptible to this problem, followed by breeder farms and, occasionally, broiler farms. Wherever poultry houses are susceptible to flooding, or litter is stored outdoors, the potential exists for fly-control problems. Several species, including house flies (Musca domestica), blowflies, and Fannia spp., are bothersome, but it is the common house fly that creates the greatest outrage and danger. It crawls over filth and food products, breeds in all kinds of organic matter (plant material, spilled grains, and animal wastes), and reproduces by the thousands. A nuisance? Yes, but also a carrier of disease for animals and people. Flies, which generally become active in the early spring (mid-March in many areas), have four stages of development: egg, larva, pupa, and adult. Most generations require about two weeks to develop. Females will produce 120 to 150 eggs in three or four days, and hatching occurs between eight and 24 hours later. House flies can complete their entire life cycle in as few as seven days; therefore, many of the newly hatched 150 flies will also breed within a few days. Twenty to 30 generations in a fly season is not unusual. As many as 1,000 flies can develop in a single pound of suitable breeding material. The actual rate of development depends, however, on the temperatures and moisture levels in the breeding area. Management of manure so that it is not conducive to fly breeding is the most effective means of control. Fresh poultry manure generally contains 60 to 80 percent moisture. Fly breeding in this material can be minimized by reducing the moisture content to 30 percent or less. This reduction also encourages the development of beneficial insects which can displace developing houseflies or serve as predators of fly eggs and larvae, or both. Dry manure management is practiced under two types of systems: (1) frequent manure removal (at least weekly), and (2) long-term, inhouse storage of manure. Frequent manure removal systems to prevent fly breeding are based on weekly (or more often) removal, spreading, and drying of manure to break the fly breeding cycle. This system is effective if done regularly and thoroughly, but it requires adequate agricultural land where manure can be spread. In-house storage of manure calls for drying the manure to about 30 percent or less moisture level and the capacity to maintain this level for up to a year. Where sufficient storage space is available, dry manure can be maintained for several years before being removed. Once removed, land application is generally made. When poultry litter is applied, it should be spread thinly to promote drying. If fly larvae are in the litter, then incorporating it into the soil as quickly as possible will help break the fly development cycle. Good housekeeping and management practices that keep manure and litter dry are a first line of defense against flies. A partial list of such practices includes the following: - Water troughs or cups should be free of leaks, drips, and condensation. The water pressure should be properly adjusted (to prevent dripping) and an on/off cycle should be used (to control condensation). - Adjust the floor/grade relationship if the water table is high or if outside water can penetrate the house. - Provide abundant cross-ventilation and avoid excessively high temperatures. - Prevent dysentery with antibiotics, if necessary, and avoid foods that have a known laxative effect. - Avoid excessively high house temperatures that encourage abnormal water intake. - ▼ Use absorbent litter materials. - Consider combining deep pit manure storage with composting for layer operations. #### **Chemical Controls** Under certain conditions, insecticides may be used to control adult flies in barns and poultry houses. But these products should be reserved for critical times when the management system breaks down, because flies quickly develop resistance. Insecticide applications may be regulated in some states and should be handled carefully to minimize any harmful effects associated with toxic ingredients. By increasing their focus on outcomes, rather than inputs, growers will find that they have many more tools than insecticides to help them control flies. Consider composting, for example. Undisturbed litter that is free of moisture will slowly begin to compost naturally, and it will support a large number of predators and parasites that feed on fly larvae. These predators include beetles, mites, and parasitic wasps. Scavenger insects help aerate the litter and make it less suitable for fly development. Take care, however, to leave the litter undisturbed; time is needed to encourage the buildup of the beneficial insects. Schedule complete cleanouts, therefore, in the off-fly seasons, and make only spot applications of insecticides in the meantime to reduce the potential for resistance to insecticides. #### Integrated Pest Management Among many reasons to include new waste management practices and beneficial insects in the battle against flies is the dawning recognition that flies are not going to be eradicated. Instead, an integrated and routine program to control them must be implemented and practiced throughout each year. Other reasons to integrate pest management measures involve changes in our understanding of and attitudes toward pesticides: - the choice of effective pesticides that can be safely applied is limited; - flies develop resistance to even the most potent pesticides, - avoiding insecticide residues in animal tissues and other products is essential, and - pesticides are included in a general concern for the effects of agricultural chemicals on the environment. Pesticides should be used, therefore, as part of an integrated system and with proper attention to practices that will minimize these concerns. Thus, consider insecticides as supplemental to good housekeeping and waste management, and use space spray with no residue to gain immediate control. Use sprayers made especially to form aerosols that will remain in the air long enough to catch the adult fly and make the application early in the morning before the flies fly up to ceilings and support posts. Using portable equipment may help the applicator reach some difficult areas around the house. Fly baits in wet or dry form can also be used as supplements to other methods. Liquid baits must be prepared by the applicator and brushed or sprayed on fly resting areas. Larvicides can be applied to manure below the cages and around waterers, but treating manure 2 PROTECTION AGAINST PESTS: CONTROLLING FLIES regularly (and throughout the facility) is not recommended. Such a practice is costly, the flies quickly develop resistance, and the treatment will also kill the beneficial insects. Some growers may want to investigate other practices, for example, feed-through larvicides or the commercially available parasitic wasps, or soldier flies, which reduce the volume of waste and crowd out houseflies. Sticky fly papers and spot cards can be used to monitor the presence of flies. Spot cards are plain white cards stapled so that each side is available for the flies to rest on. The resting flies leave brown regurgitation and fecal spots on the cards, which are then retrieved and the spots counted. Chemical treatments are advised if the grower finds 50 spots per card per week. (The cards also provide a handy record of conditions — and indicate the grower's use of controls — should such a record be needed. Some type of regular "scouting" or inspection schedule should be used throughout the year to determine where and when the fly population is developing, and therefore where and when to use cultural practices or pesticides. It can also help the grower determine the effectiveness of the control program overall. #### References - Axtell, R.C. 1985. Arthropod Pests of Poultry. Pages 269-295 in Linestock Entomology, R.E. Williams et al., editors. John Wiley and Sons, New York, NY. - Collison, C.H. 1996. Manure Management Strategies to Control Flies. In Manure Management for Environmental Protection. Reprinted as Fact Sheet. Pennsylvania Cooperative Extension, Pennsylvania State University, Lancaster. PA. - Nolan, M.P. Jr. 1988. Control External Parasites and House Files Around Poultry Operations. Bulletin 723. Cooperative Extension Service. College of Agriculture, University of Georgia, Athens. - Strother, G.R. 1990. Fly Control in Poultry Operations. DTP Circular 12/90-015. Cooperative Extension Service, Auburn University, Auburn, AL. - Williams, R.E. 1990. Fly Control in Poultry Houses. E-3. Cooperative Extension Service, Purdue University, West Lafayette, IN. - Poultry Producers. Poultry Times, June 2, pp. 1, 5, 19. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. OEI / 8 — 9/98 POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 PROTECTION AGAINST PESTS: CONTROLLING FLIES 3 ## CONSTRUCTED WETLANDS agricultural runoff is one of the nonpoint sources of pollution that threatens the water quality in rivers and lakes of the United States. Water that flows off the land after precipitation events picks up fertilizers and animal wastes that have been applied to the soil and deposits them in lakes and rivers. If the runoff is uncontrolled, it causes soil erosion and increases the presence of suspended solids, which can contain nutrients, pesticides, herbicides, and
metals, in the water. Flooding and the degradation of rivers, streams, and lakes are possible consequences. Nonpoint source pollution can also threaten groundwater quality as the same pollutants leach through the soil. Runoff can be controlled. Best Management Practices (BMPs) can be adopted as part of the poultry grower's operating procedure. For example, stormwater can be diverted from poultry houses and manure storage areas, and land applications can be made when no storms are predicted. In addition, the arsenal of BMPs now includes the use of constructed wetlands for treating runoff and wastewater. ## Functions of Constructed Wetlands Constructed wetlands are not considered to be waters of the United States; but components of a wastewater treatment system. Therefore, if there is a discharge from a constructed wetlands, a federal or state discharge permit may be required. A constructed wetlands is a designed structure, or set of structures, that attempts to replicate the functions of a natural wetlands. As with natural wetlands, they support water tolerant or aquatic plants and their soils are saturated (waterlogged) or covered with shallow water for some part of the year. However, since constructed wetlands are designed to treat wastewater efficiently and effectively, they generally do not fulfill all the functions provided by a natural wetlands (e.g., they do not recharge groundwater or contribute to the creation of hydric soils). The constructed wetland is the heart of the treatment system. It cleans wastewater by filtering and settling solids, decomposing organics, and adsorbing/absorbing other pollutants such as phosphorus and trace metals. The dissolved organic pollutants are removed by a complex group of microbes (bacteria, fungi, algae, and protozoa) that live in the wastewater and on plant and sediment surfaces. Since waste materials are food for most of these microbes, pollutants are gradually converted through complex food cycles into environmentally less damaging by-products (gases that escape to the air and inert solids that stay in the system). The primary purpose of wetland plants is to provide a place for these microbes to attach and grow. Generally, treatment effectiveness increases with plant density, which allows a larger quantity of attached microbes to exist within the system. The density of plants also affects flow hydraulics. Uniform flow is enhanced by uniform plant densities, but variable densities create short-circuiting which reduces the retention time and treatment effectiveness of the wetland. In addition, plants make the system attractive and provide food and shelter for wildlife. The system remains effective during winter because the microbes are still present on the dead stalks, stems, and roots of the vegetation. Because the biological processes slow down during winter, wetland systems are typically sized to meet treatment objectives during cold weather. #### Designing Constructed Wetlands Constructed wetlands can effectively treat poultry industry wastewaters, including stormwater runoff. These wetlands are designed by engineers and built to restore, enhance, or replace the physical, chemical, and biological processes in natural wetlands. They are typically used as polishing cells following conventional primary treatment facilities such as lagoons, settling basins, or septic tanks. The integrated treatment system provides a higher quality wastewater that may be recycled or discharged to a receiving stream if appropriate permits are obtained. In addition, the volume of treatable wastewater may be substantially reduced during the growing season because of evapotranspiration by the plants. For example, a poultry producer currently having difficulty with overflowing lagoons during wet weather now has the option of adding constructed wetlands, which can be used to treat a portion of the lagoon wastewater during the growing season. Typically the wastewater in the wetlands will be evapotranspired, but any effluent can also be recycled as process waste or as irrigation water. Constructed wetlands consist of one or more "cells" of wetland plants in series or parallel. Construction can be easily accomplished. Excavate the area to shape the bottom of the wetlands and build small dikes around it. Line the bottom and sides of the excavated areas with clay or a synthetic material. Use PVC pipe to distribute and collect wastewater and to control water levels in the wetland. Water levels are normally shallow — about 3 to 12 inches. Uncontaminated runoff can be diverted from the system by berms or other buffers or grading. A lagoon, detention basin, or other type of solids trap is used in front of the constructed wetlands to remove heavy or coarse solids. Some contaminated runoff contains high sediment loads and decomposing organic matter that may settle in bottom deposits. Because these deposits can adversely affect the hydrology and life forms in the wetland, the solids trap is particularly important. Most wetland systems for treating agricultural related wastewaters will not be larger than one or two acres. In general, they should not be located in areas with steep topography, shallow topsoil, or limited space. They must be properly constructed to ensure groundwater protection. Federal, state, or local cost-share funds may be available for constructed wetlands. #### Management Wetland plants include mixtures of cattails, reeds, bulrushes, sedges, and grasses that are normally native to the area. The plants provide the right conditions for the microorganisms that live in the wetlands and break down the pollutants. Pond and wetland systems are particularly effective because ponds can be designed to catch the stormwater and slowly release it to the wetlands following the storm. This technique keeps the wetlands wet for longer time periods, which can be especially important during dry seasons. The systems need little routine maintenance but should be inspected periodically to detect any loss of plants, leakage through the dikes, clogging of the pipes, mosquitoes, or short-circuiting of the flow. These problems and others are usually easily corrected. Properly managed constructed wetlands are cost effective, energy efficient, and simple to operate. They accept varying pollutant loads, attract a variety of wildlife, and add diversity to the farm landscape. Above all, constructed wetlands can help achieve clean water. Information on the design and construction of wetlands for managing wastewater is available from USDA Natural Resources Conservation Service local offices, and the U.S. Environmental Protection Agency. #### References - Olson, R.K. 1993. Created and Natural Wetlands for Controlling Nonpoint Source Pollution. CRC Press, Boca Patro. Fl - Schueler, T.R. 1992. Design of Stormwater Wetlands Systems. No. 92710. Metropolitan Washington Council of Governments, Washington, DC. - Tennessee Valley Authority. No date. Natural and Constructed Wetlands. Fact Sheet in cooperation with U.S. Environmental Protection Agency. No place of publication. - U.S. Environmental Protection Agency. 1990. Uses of Wetlands in Stormwater Management. Watershed Management Unit, Water Division, Region 5, Chicago, IL. - U.S. Department of Agriculture. 1991. National Bulletin No. 210-1-17. Soil Conservation Service, Washington, DC. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. for everyone. POULTRY WATER QUALITY CONSORTIUM 5100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 CONSTRUCTED WETLANDS 3 ## Using Litter to Generate Heat and Electricity Incineration of on-farm poultry mortalities increases in popularity as new technologies add affordability to perceived environmental and health advantages that incineration can offer over other methods of dead bird disposal. Now, engineering and technological developments are occurring to determine if burning litter is a feasible alternative or complementary to other methods of poultry litter management. Examples of two loosely related, developing alternatives are presented here: the first burns air-dried litter to produce energy for regional distribution; the second, collects litter in a fluidized-bed combustion system and uses it to heat the poultry house. Applying these methods to poultry litter management requires considerable research and development because they have so far been too expensive to use in small systems. ## Using Air-dried Litter as an Alternative Fuel The first in a new breed of commercial electricity generating stations fueled by poultry litter was introduced in the United Kingdom in 1992. Today, the plant, which cost \$30 million has a gross output of 14.2 megawatts. The plant is fired on about 143,300 tons of litter per year (roughly the same energy as would be derived from 66,139 tons of coal). Special road vehicles deliver the material to the plant's storage bunker. The area of production is within a 31-mile radius of the plant. Environmentally, this technology has a lot to offer: ▼ it creates demand for the product that effectively prevents the excessive - application of litter on agricultural fields, thereby protecting water resources and restoring nutrient balance; - gases produced in the process are low in major pollutants and after treatment in a three-stage electrostatic precipitator are suitable for discharge to the atmosphere; - ▼ it is low in cost and continuously available; and - the ash by-product is high in potash and can be femoved from the plant in bulk and used as a component of manufactured
agricultural fertilizers. #### Fluidized-bed Combustion Fluidized, or bubbling, bed combustion has been used, worldwide, in industry, for more than 20 years. Now some agricultural and government researchers and others in the poultry and waste management industries are probing the usefulness of burning poultry litter in a fluidized bed combustion system. The objectives of modifying or otherwise developing this technology are twofold: first, to determine whether this method can dispose of litter efficiently and clearly; and second, whether this biomass is a suitable raw material for energy production. Recent claims suggest that the technology has many applications: - the generation of hot gases for heating and drying; - ▼ the generation of electrical power; - the generation of steam and pressurized systems to suit process inlet requirements. If so adapted, it would have several advantages: - modular designs that are inexpensive and easy to install; - ▼ reduced power consumption to save operating costs; - ▼ adaptable to a variety of waste streams should conditions change; and — of most importance to some poultry growers — - ability to burn waste materials having an extremely high moisture content. If these and other technologies for converting litter to energy are successful, they will help expand potential uses for litter, increase environmental well-being, and contribute to economic sustainability. #### References - Dagnall, S.P. 1992. Poultry Litter as Fuel in the UK.— A Review. Proceedings of the Incineration Conference. Albuquerque, NM. - Vayda, S. 1996. Marketing Package Addressed to the Poultry Water Quality Consortium. Vayda Energy Associates, Inc., Hampstead, MD. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. AT / 2 — 9/98 POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 ÷ 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 2 USING LITTER TO GENERATE HEAT AND ELECTRICITY # ALTERNATIVE BEDDING — SELECT MATERIALS MAY HAVE HIDDEN VALUES In the Near East (Morocco), straw is the conventional poultry litter. Recent drought conditions, however, have depleted supplies, forcing growers to pay more and settle for less — or find alternatives. This story is repeated in many regions: the conventional bedding materials and the cause of the shortage may vary, but the race is on for finding suitable alternatives. A further impetus to trials involving litter materials is the challenge growers face each day: the perception, whether imagined or real, that they must do more to help meet state and regionally mandated reductions in the total volume of wastes stemming from human activities (rural and urban). These "goals" are generally 25 to 40 percent of the total volume produced at the time the goal was set. Particular goals depend on the overall status of resources in the watershed. The search for alternative litter supplies has environmental consequences on both counts. First, used litter constitutes a large part of the material that each grower must land apply, compost, convert to energy, or otherwise dispose of or recycle. Second, the choice of litter materials may have unexpected benefits: some producers have found that using shredded paper as a litter material reduces odor and provides a nearby market for the town's newspaper recycling program. #### Straw The Moroccan study tested alternative litter materials on cockerel performance and litter quality. The materials investigated included soft wheat straw (whole or ground), rice straw (ground) wood shavings and rice hulls, alone and in combination. The birds' performance, water consumption, and leg injuries or defects were measured; and the various litters were compared for moisture content, pH, temperature, overall cleanliness scores, and buildups of dust and ammonia. Differences were noted in the litters, but they were inconclusive. However, straw-based litters had the highest moisture content, pH values, and temperatures, and they received the lowest scores when subjectively rated. Notwithstanding this finding, all materials tested, including straw, were deemed suitable bedding materials, singly or in combination with other materials. #### **Evaluating Alternative Materials** Fine-textured particleboard residue, a by-product of the wood manufacturing industry that usually ends up in landfills, has been proposed as a way for poultry growers to compensate for the increasing scarcity of hardwood or pine shavings in Indiana. In this case, the shortfall in conventional bedding materials may be driving the search for alternatives but the alternatives themselves — for example, sand, particleboard, newspaper, rice and peanut hulls, ground corn cobs, cereals, and grasses — are turning up some surprising trade-offs. Previous investigations of litter sources correlated the type of bedding with significant differences in bird performance and carcass and litter quality. Thus, the quantitative and qualitative properties in each kind of litter should be taken into consideration before litter is purchased and placed in chicken houses. Evaluating the performance of the litter generally involves a comparison of two or more types of litter and a litter prepared from the same ingredients but combined to study the effects of using both at one time. Other management and environmental practices, for example, dietary arrangements, types of feeders and waterers, and litter removal or replacement must be handled the same way throughout the trial in all pens included in the experiment. Parameters chosen to measure the effects, if any, of the litter on the birds' condition and on the quality of the bedding include the birds' weight gain, feed conversion, mortality, and water consumption; and the degree of caking, pH, ammonia nitrogen, temperature, dust, and moisture conditions in the litter. In the Moroccan trials, for example, each of the materials included in the experiment tested as "suitable" for litter, though straw got lower index values for cleanliness. No statistical differences could be found in the way these materials acted, and no correlation was observed between increased litter moisture levels and leg abnormalities. Investigators concluded therefore, that even litter materials that may warrant minor complaints, for example, straw, can be used as needed. They could be used as a base, for example, and top-dressed with less available but more preferred materials, such as sawdust or wood shavings. Future studies may profitably assess the litter microbiological parameters and carcass side-effects. ## Litter Alternatives Tested in Indiana Fine and coarsely textured particleboard litter trials carried out on male turkey farms in Indiana yielded good results; the particleboard, containing less moisture to begin with produced a cleaner, drier product initially. It was drier and had less bacteria and mold on day zero. The birds raised on fine particleboard had several advantages over the pine shavings and coarse particleboard, including fewer breast buttons and leg abnormalities and a 0.22 kg gain in muscle deposition, which off-set a 0.16 kg reduction in market body weight (as compared to birds grown on the traditional litter). Coarse particleboard, on the other hand, has jagged edges. The birds suffered some foot-pad dermatitis, but not to a level to cause concern. Therefore, coarse particleboard is also an acceptable litter material for use on male turkeys. #### Sand Sand is another material that shows continuing potential as an alternative bedding material. In recent trials, chicks were randomly assigned to litter treatments of either sand or pine shavings. The birds' health and performance were compared at 50 days of age; carcass grade and vield and foot pad lesions were examined by processing 10 male and 10 female birds per pen; and bacterial counts were determined at the end of the trial by analyzing pooled litter samples taken from each pen. No differences were found in body weights, mortality, or feed conversion in the birds; and no significant differences were found in their carcass grade or yield or foot pad lesions. Likewise, no differences were found for litter moisture or litter temperatures. Abdominal fat yields, however, were significantly lower for the birds grown on sand litter, and the sand pens also had significantly lower E. coli and aerobic plate counts than the pine shavings pens (6.09 and 7.25 CFUs/g, respectively). The trials continue; however, sand is already an acceptable alternative. #### New or Recycled Paper Broiler growers in the Northwest tested virgin and recycled paper-mill waste as an alternative to fir shavings and rye grass. The results showed no difference in the birds' four- or seven-week body weights, feed conversion rates, or mortality. However, the houses containing the short fiber pulp and paper waste litter produced less caking. In northern Georgia, the Chestatee-Chattahoochie Resource Conservation and Development Council, in cooperation with the North Georgia Waste Management Authority and local poultry integrators, evaluated various recycled paper products as poultry bedding. The recycled paper proved to be equal to or better than the traditional wood shavings, sawdust or rice hulls. ## Coffee Bean Hulls, Straw, Wood, and Paper Kentucky tested coffee bean hulls, wheat straw, wood shavings and two kinds of paper ("mixed paper and recycled hardback books" and "mostly hardbacks") The birds showed no 2 ALTERNATIVE BEDDING: SELECT MATERIALS MAY HAVE HIDDEN VALUES significant differences in body weight, feed consumption and efficiency,
breast blisters, or leg abnormalities. However, the caking effect and temperature were highest in wood shavings. The litter temperature in all cases was higher than the ambient temperature. #### An Interesting Corollary Pending additional study, growers can use a variety of materials to substitute for or to replace conventional bedding materials, and therefore some measure of control over failing supplies or rising prices, and other factors than supply and demand can influence this choice. So what about the use of products (e.g., recycled paper, plant residues, or sawdust and chips generated in wood product manufacturing) that nobody else wants? Can we really use paper diverted from landfills, such as newspaper and old phone books? Those who have tried it think we can. In their view, bedding made from recycled paper is cleaner than some other bedding materials. It is higher in density and absorbency, provides additional pest control, and helps control odor. In the house, its proponents suggest, it lets chicks grow in less stress; and in the field, it decomposes quickly. At the present time, paper makes up about 38 percent of the waste stream. Using it as a bedding material presents an interesting possibility. #### References Benabdeljelil, K. and A. Ayachi. 1996. Evaluation of Alternative Litter Materials for Poultry. Journal of Applied Poultry Research 5:203-209. Hermes, J.C., H.S. Nakaue, and C.A. von Bargen Gould. 1996. Studies on Virgin and Recycled Pulp and Paper Mill Waste Short Fiber as an Alternative Bedding Material for Broilers. Presentation at the 85th Annual Meeting of the Poultry Science Association, Inc., July 8-12, in Louisville, KY. Hester, P.Y., D.L. Cassens, and T.A. Bryan. 1996. The Applicability of Particleboard Residue as a Litter Material for Male Turkeys. Poultry Science 76:248-255. Montenegro, G.I., S.F. Bilgili, J.B. Hess, M.K. Eckman, and D.E. Conner. 1996. Comparison of Sand and Pine Shavings as Litter Sources for Broilers. Presentation at the 85th Annual Meeting of the Poultry Science Association. Inc., July 8-12, in Louisville, KY. Pescatore, A.J., A.H Cantor, K.Ryan, M.L. Straw, and M.J. Ford. 1996. Evaluation of Alternative Bedding Materials on Broiler Performance, Litter Quality, and Temperature. Presentation at the 17th Annual Meeting of the Southern Poultry Science Society, January 22-23. in Atlanta, GA. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. AT / 3 — 9/98 POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 ALTERNATIVE BEDDING: SELECT MATERIALS MAY HAVE HIDDEN VALUES 3 # PHYTASE SUPPLEMENTS — A FEED ADDITIVE THAT IS GOOD FOR THE ENVIRONMENT that land applications of poultry litter and manure and mortality compost based on nutrient management planning are helping to protect the environment. But nutrient management plans also have an anomaly: namely, they are too often based on nitrogen alone. The practice has inadvertently contributed to a build up of phosphorus in soils that far exceeds plant needs and is easily released to the environment. The problem is compounded because phosphorus is an important dietary nutrient for poultry, and high levels of phosphorus are found in poultry waste. The solution, it now appears, must be twofold: we must stop applying so much phosphorus to the land — in some regions, no phosphorus at all — and, if possible, we must find ways to limit the available phosphorus in poultry waste. Phytase, an enzyme that increases the availability of naturally occurring phosphorus in poultry diets while decreasing the level of phosphorus found in poultry waste, may be part of the solution. Adequate dietary phosphorus is a requirement for healthy birds, and inorganic supplements of calcium and phosphorus are normally included in their diet — sometimes at extremely high levels — to guard against leg weakness, improve bone density and egg quality, and enhance weight gains. However, when phytase is used as a dietary supplement, both calcium and phosphorus supplements can be greatly reduced. Phytase has a positive effect on bird growth: according to trials performed at the University of Minnesota, which linked the use of phytase supplements to profitability (i.e., to the bird's market value). Tests described by BASF Animal Nutrition, the U.S. marketer of phytase under the brand name Natuphos, indicate that turkeys fed 73 percent of recommended inorganic phosphorus supplements, 100 percent of the recommended calcium, and 500 units of phytase per kilogram of feed resulted in 20 percent higher net returns than for turkeys fed the conventional way. A positive net return was also noted for birds fed 52 percent of the recommended phosphorus supplements and 200 units of phytase per kilogram of feed. Birds fed inadequate levels of phosphorus without phytase performed poorly and resulted in negative net returns. #### Other Studies Other projects to evaluate phytase have demonstrated similar results. - ▼ Research funded by the Georgia-based U.S. Poultry and Egg Association in 1996 showed that feeding phytase and a vitamin D3 derivative to broilers reduced the birds' need for dietary phosphorus. - Phytase supplements have also been shown to improve calcium and phosphorus use in commercial layers as determined by egg shell quality, feed consumption, egg production, and egg weight. - Other benefits of phytase supplements that have been demonstrated indicate that they can correct the adverse effects of egg production associated with low dietary phosphorus and significantly reduce the impact of low dietary calcium on bird health. ▼ Broilers and hens on corn-soybean diets supplemented with phytase also showed significant linear responses to increasing levels of phytase. The study concluded that phytase increased the use of dietary phosphorus. #### References - Anon. 1996. Minnesota Study Shows the Profitability of Phytase Supplementation on Turkeys. Poultry Times, May 19, 1997, p. 31. - 1996. SPEA-funded Research Covers a Wide Spectrum of Poultry. Poultry Times, May 6, 1996, p. 22. - Carlos, A.B., and H.M. Edwards, Jr. 1996. Phytase Improves the Natural Phytate Phosphorus Utilization of Laying Hens Fed a Com-Soybean Diet. Presentation at the 17th Annual Meeting of the Southern Poultry Science Society, January 22-23, in Atlanta, GA. - Carlos. A.B., A.B. Kasim, and H.M. Edwards, Jr. 1996. Evaluation of the Responses to Graded Levels of Phytase in Broilers. Presentation at the 85th Annual Meeting of the Poultry Science Association, Inc., July 8-12, in Louisville, KY. - R.W. Gordon, and D.A. Roland, Sr. 1996. Influence of Phytase on Caicium and Phosphorus Utilization in Commercial Laying Hens. Presentation at the 85th Annual Meeting of the Poultry Science Association, Inc., July 8-12, in Louisville, KY. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. AT / 4 — 9/98 POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 2 PHYTASE SUPPLEMENTS: A FEED ADDITIVE THAT IS GOOD FOR THE ENVIRONMENT POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 5720 Uptain Road Chattanooga, TN 37411 Tel: 423 855-6470 Fax: 423 855-6807 ## POULTRY WATER QUALITY CONSORTIUM The poultry industry and three government agencies have joined together to form the Poultry Water Quality Consortium to promote better environmental management by the rapidly growing poultry industry. The Consortium encourages the use of poultry by-products as a resource rather than letting them become a pollution source. As the industry grows, protecting natural resources is becoming a major priority, demanding new technologies in poultry by-product development, storage, utilization, and land application. The Consortium is responding to this environmental challenge by promoting cooperation and the exchange of information between the poultry industry and government agencies on water quality and by-product utilization issues. Focusing on pollution prevention, the Consortium will facilitate the development and transfer of new technologies designed to protect water quality, and promote a clean environment. #### Members of the Consortium - ₩ U.S. Poultry & Egg Association - ▼ Tennessee Valley Authority - ▼ U.S. Environmental Protection Agency - ▼ U.S. Department of Agriculture Natural Resources Conservation Service #### Contact Larry Goff, Liaison Poultry Water Quality Consortium 6100 Building, Suite 4300 5720 Uptain Road Chattanooga, TN 37411 tel: 423 855-6470 fax: 423 855-6607 Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 ## U.S. POULTRY AND EGG ASSOCIATION Poultry & Egg Association is
the largest and most active poultry organization of its kind. Known as the "All-Feather Organization," the association addresses the changing needs of those involved in producing and processing poultry and eggs. The U.S. Poultry & Egg Association is dedicated to the growth and development of the poultry industry and represents the entire industry — from the producers of eggs, broilers, and turkeys to the processors of poultry and egg products and the many allied companies serving the industry. U.S. Poultry & Egg has a long-standing commitment to promoting continuous improvement in environmental management by the poultry industry. #### Services Available to Poultry Growers U.S. Poultry is best known for its annual International Poultry Exposition, held in January in Atlanta, Georgia. The Expo features the world's largest display of technology, equipment, and supplies used to produce and process poultry and egg products. Continuing education is a high priority. The association's seminar program has expanded into a comprehensive schedule of workshops and clinics to keep the poultry industry informed. Twelve seminars are held each year. Through its government relations program, U.S. Poultry and Egg keeps Congress and federal agencies aware of industry needs, and informs members of government actions. The association's research program returns millions of dollars to the industry. Research grants are used to find better ways of producing poultry and egg products. Members are kept aware of industry developments through the distribution of newsletters, reports, and memos. #### Contact . Don Dalton, President U.S. Poultry & Egg Association 1530 Cooledge Road Tucker, GA 30084 TEL: (770) 493-9401 FAX: (770) 493-9257 Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. R1/2 — 9/98 POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 ## USDA NATURAL RESOURCES CONSERVATION SERVICE The Natural Resources Conservation Service (NRCS), an agency within the U.S. Department of Agriculture (USDA), administers national soil and water conservation programs with the cooperation of landowners and operators in local soil conservation districts and other government agencies. It has traditionally provided technical and financial assistance to the U.S. agricultural community to help individuals plan, design, and implement waste management systems and other conservation projects. In addition, NRCS offers education, research, and database development. The NRCS focuses on nonpoint source pollution and its effects on soil, water, air, plants, animals, and people. Potential agricultural contaminants include pesticide residues, nutrients, salts, trace minerals, and sediment. To help the agricultural community treat or prevent water quality problems. NRCS pròmotes economically feasible and practical measures, such as the environmentally safe management of dead birds, litter, and manure; the development of nutrient management plans; and the construction of litter storage facilities. NRCS also encourages voluntary approaches to solving resource problems as it works to insure a continuing exchange of information. #### Services Available to Poultry Growers Through its conservation practices, the NRCS provides planning, design, and construction assistance on waste treatment lagoons, manure and litter dry-stacking facilities, poultry mortality facilities, management, and nutrient management plans based on soils, crops, and equipment availability. It also serves as technical representative for USDA cost-share programs to implement nutrient and poultry mortality management systems and, in some cases, provides financial as well as technical assistance in special project areas. The NRCS works closely with state regulatory agencies in waste management. #### Contact For more information about NRCS programs and assistance, call or visit the NRCS office listed in your local telephone directory under U.S. Department of Agriculture. Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411. Tél: 423-855-6470 • Fax: 423-855-6607 ## TENNESSEE VALLEY AUTHORITY The Tennessee Valley Authority (TVA) is committed to develop and implement programs and activities that will assist agriculture and agribusiness to protect the environment. Protecting water quality is a major concern of TVA, as illustrated by its ongoing projects related to nonpoint source protection. TVA has established close ties with federal and state agencies, universities, and private organizations concerned with water resources management and nonpoint source control and, therefore, is in an excellent position to identify, demonstrate, and transfer poultry by-product resources technology to potential users. ## Services Available to Poultry Growers TVA's programs and projects primarily deal with helping prevent or reduce impacts of the poultry industry on the environment. This service is accomplished through educational workshops and demonstrations in cooperation with other federal and state agencies. #### Contact Richard Strickland Tennessee Valley Authority P.O. Box 1010 Muscle Shoals, AL 35662-1010 Tel: (205) 386-2542 Fax: (205) 386-2542 Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 ## U.S. Environmental Protection Agency The U.S. Environmental Protection Agency (EPA) is dedicated to improving and preserving the quality of the environment and reducing risks to human health and the environment. Point and nonpoint sources of pollution are addressed under the Clean Water Act. Certain poultry production, processing and rendering plants are regulated as point sources and may be required to obtain a permit. However, many of EPA's efforts to prevent or reduce water pollution associated with poultry byproducts involve nonpoint source pollution. EPA helps states develop their nonpoint source assessments and management programs and provides assistance to implement nonpoint source control practices. EPA believes the Poultry Water Quality Consortium will lead to greater cooperation between the poultry industry and government agencies on water quality and by-product utilization, thus reducing environmental and health risks and benefiting agriculture and the larger community. #### Services Available to Poultry Growers EPA administers a variety of nonpoint source control programs to address animal waste problems associated with smaller operations. Currently, funds are provided to states under section 319(h) of the Clean Water Act to help them implement nonpoint source management programs including for example, demonstrations of poultry composting facilities or development of educational manuals or regulations to address poultry by-products. EPA provides assistance to states to implement nonpoint source controls under other programs such as the Chesapeake Bay Program, the Gulf of Mexico Program, and the Clean Lakes Program. #### Contacts The U.S. Environmental Protection Agency, headquartered in Washington, DC, operates 10 regional offices. #### U.S. EPA, Region 1 (CT, MA, ME, NH, RI, VT) John F. Kennedy Federal Building One Congress Street Boston, MA 02203 TEL: (617) 565-3420 FAX: (617) 565-3660 #### U.S. EPA, Region 2 (NJ, NY, PR, VI) 290 Broadway New York, NY 10007 TEL: (212) 637-3000 FAX: (212) 637-3526 U.S. EPA. Region 3 (DC, DE, MD, PA, VA, WV) 841 Chestriut Building Philadelphia, PA 19107 TEL: (215) 566-5000 FAX: (215) 566-5103 ## U.S. EPA. Region 4 (AL, FL, GA, KY, MS, NC, SC, TN) 61 Forsyth Street, SW Atlanta, GA 30303 TEL: (404) 562-9900 FAX: (404) 562-8174 #### U.S. EPA. Region 5 (IL, IN,MI, MN, OH, WI) 77 W. Jackson Boulevard Chicago, IL 60604 TEL: (312) 353-2000 FAX: (312) 353-4135 #### U.S. EPA, Region 6 (AR, LA, NM, OK, TX) 1445 Ross Avenue, Suite 1200 Dallas, TX 75202-2733 TEL: (214) 665-6444 FAX: (214) 665-2146 #### U.S. EPA, Region 7 (IA, KS, MO; NE) 726 Minnesota Avenue Kansas City, KS 66101 TEL: (913) 551-7000 FAX: (913) 551-7467 U.S. EPA, Region 8 (CO, MT, ND, SD, UT, WY) 999 18th Street, Suite 500 Denver, CO 80202-2466 TEL: (303) 312-6312 FAX: (303) 312-6339 #### U.S. EPA, Region 9 (AS, AZ, CA, GU, HI, MP, NV, TT) 75 Hawthorne Street San Francisco, CA 94105 TEL: (415) 744-1305 FAX: (415) 744-1514 #### U.S. EPA, Region 10 (AK, ID, OR, WA) 1200 Sixth Avenue Seattle, WA 98101-9797 TEL: (206) 553-1200 FAX: (206) 553-0149 #### U.S. EPA, Headquarters Office of Water 401 M Street, SW Washington, DC 20460 TEL: (202) 260-5700 FAX: (202) 260-5711 Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to
producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water RI / 5 --- 9/98 for everyone. POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 - Fax: 423 855-6607 # DIRECTORY OF POULTRY ASSOCIATIONS STATE, REGIONAL, AND NATIONAL The following state, regional, and national organizations are listed in alphabetical order. The organizations in most states are therefore listed together; however, if you are looking for a particular association, please consult the entire list. The Wilkes Area Poultry Association, for example, is listed under W, not under North Carolina. We hope that we have not inadvertently omitted or incorrectly identified any organization or its address. This material will be updated from time to time. #### ALABAMA POULTRY & EGG ASSOCIATION P.O. Box 240 Montgomery, AL 36104-0240 TEL: (334) 265-2732 FAX: (334) 265-008 John Q. Adams, Executive Director www.johnnyadams@apend_link.net #### ALASKA DIVISION OF AGRICULTURE P.O. Box 949 Paimer, AK 99645 TEL: (907) 745-7200 FAX: (907) 745-7112 Doug Warner, Development Specialist Douglasw@dnr.state.ak.us #### AMERICAN EGG BOARD 1460 Renaissance Drive Park Ridge, IL 60068 TEL: (847) 296-7043 FAX: (847) 296-7007 Louis Raffel, President www.aeb.org #### AMERICAN POULTRY ASSOCIATION 26363 South Tucker Road Estacada, OR 97023 TEL: (508) 473-8769 Karen Poor #### ARIZONA POULTRY IMPROVEMENT BOARD 37860 West Smith Enke Road Maricopa, AZ 85239 TEL: (520) 568-2273 FAX: (520) 568-2556 Dr. Ed Bicknell #### ARIZONA POULTRY FEDERATION c/o Hickman's Egg Ranch 7403 North 91st Avenue Glendale, AZ 85305 TEL: (602) 872-1120 FAX: (602) 872-9220 Glenn Hickman, Director #### ARKANSAS POULTRY FEDERATION P.O. Box 1446 Little Rock, AR 72203-1446 TEL: (501) 375-8131 FAX: (501) 375-5519 Don Allen, Senior Vice President #### CALIFORNIA EGG COMMISSION 1150 North Mountain Avenue Suite 114 Upland, CA 91786 TEL: (909) 981-4923 FAX: (909) 946-5563 Robert D. Pierre, President www.eggcom.com ### CALIFORNIA POULTRY INDUSTRY FEDERATION 3117 A McHenry Avenue Modesto, CA 95350 TEL: (209) 576-6355 FAX: (209) 576-6119 Bill Mattos, President http://www.cpif.org 4816 E County Road, #30 #### COLORADO POULTRY IMPROVEMENT BOARD Ft Collins, CO 80525 TEL: (970) 226-3680 William C. Lower, Secretary/Treasurer #### INFORMATION SOURCE #### CONNECTICUT POULTRY ASSOCIATION Department of Agriculture 165 South Capitol Avenue Hartford, CT 06106 TEL: (203) 566-5268 FAX: (203) 566-8791 Director, Bruce Sherman #### DELAWARE POULTRY IMPROVEMENT ASSOCIATION RD 6, Box 48 Georgetown, DE 19947 TEL: (302) 856-7303 FAX: (302) 856-1845 Daniel Palmer, Poultry Specialist 39976@udel.edu #### DELMARVA POULTRY INDUSTRY, INC. RD 6, Box 47 Germantown, DE 19947-9575 TEL: (302) 856-9037 FAX: (302) 856-1845 Bill Satterfield, Executive Director #### FLORIDA POULTRY FEDERATION 4508 Oak Fair Boulevard, Suite 290 Tampa, FL 33610 TEL: (813) 628-4551 FAX: (813) 620-4008 Charles R.Smith, Executive Director . #### GEORGIA EGG ASSOCIATION & COMMISSION 16 Forest Parkway Forest Park, GA 30297 TEL: (404) 363-7661 FAX: (404) 363-7664 Robert Howell, Executive Director #### GEORGIA POULTRY FEDERATION P.O. Box 763 Gainesville, GA 30503-0763 TEL: (770) 532-0473 FAX: (770) 532-7543 Abit Massey, Executive Director #### GEORGIA POULTRY IMPROVEMENT ASSOCIATION P.O. Box 20 Oakwood, GA 30566 TEL: (770) 535-5996 FAX: (770) 539-1948 James Scroggs, Director #### HAWAII FRYER COUNCIL. 1818 Kanakanui Street Honolulu, HI 96819 TEL: (808) 841-2828 E.F. Morado, President #### HAWAII EGG PRODUCERS ASSOCIATION 841 Bishop Street, Suite 850 Honolulu, HI 96813 TEL: (808) 522-5133 FAX: (808) 522-5144 Vernon Char, Attorney #### IDAHO POULTRY INDUSTRY c/o Merrill Poultry Farms, Inc. Rt. 2. Box 2184 Paul, ID 83347 TEL: (208) 438-4605 FAX: (208) 438-8694 Lloyd Merrill, President #### ILLINOIS POULTRY INDUSTRY COUNCIL 282 Animal Science Lab 1207 West Gregory Urbana, IL 61801 TEL: (217) 244-0195 FAX: (217) 333-7861 Kenneth W. Koelkebeck, Executive Secretary #### ILLINOIS STATE TURKEY GROWERS ASSOCIATION 9193 Tampico Road Rock Falls, IL 61071 TEL: (815) 438-2580 Merle Gaulrapp, Director #### IOWA POULTRY ASSOCIATION 535 East Lincoln Way P.O. Box 704 Ames, la 50010-0704 TEL: (515) 232-2103 FAX: (515) 232-2825 Kevin Vinchattle, Executive Director #### IOWA TURKEY FEDERATION P.O. Box 825 Ames, LA 50010-0825 TEL: (515) 232-7493 FAX: (515) 232-2825 Gretta Irwin, Executive Director #### Kansas Poultry association & Kansas TURKEY FEDERATION Kansas State University Department of Animal Science 130 Call Hall Manhattan, KS 66506 TEL: (913) 532-1201 FAX: (913) 532-5681 John Miller, President sveyer@oz.oznet.ksu.edu #### KENTUCKY POULTRY FEDERATION/EGG COUNCIL P.O. Box 21829 Lexington, KY 40522-1829 TEL: (606) 266-8375 FAX: (606) 266-8375 Carole Knobbett, Executive Director #### KENTUCKY POULTRY IMPROVEMENT ASSOCIATION 604 Garrigus Building Lexington, KY 40546 TEL: (606) 257-7529 FAX: (606) 258-1027 Anthony Pescatore #### LOUISIANA POULTRY FEDERATION 241 Knapp Hall Louisiana State Univesity Baton Rouge, LA 70803 TEL: (504) 388-8667 FAX: (504) 388-2478 Rosilyn Williams, Poultry Specialist rwilliams@agctr.lsu.edu #### MAINE POULTRY FEDERATION P.O. Box 228 Augusta, ME 04330-0228 TEL: (207) 622-4443 FAX: (207) 623-3748 William Bell, Executive Director newengag@mint.net #### MARYLAND EGG COUNCIL, INC. 3109 Animal Science Center University of Maryland College Park, MD 20742 -TEL: (301) 405-5775 FAX: (301) 314-9557 Dr. John Doerr, Chairman #### MASSACHUSETTS POULTRY ASSOCIATION 22 Kimball Place Fitchburg, MA 01420 TEL: (508) 345-4103 FAX: (508) 345-7187 Richard Francis, Director of Operations #### MIDWEST POULTRY FEDERATION & MINNESOTA TURKEY GROWERS ASSN. 2380 Wycliff Street St Paul MN 55114 TEL: (612) 646-4553 FAX: (612) 646-4554 * Jodi Day, Executive Director mnturkey@aol.com #### MIDWEST UNITED EGG PRODUCERS P.O. Box 170 124 North Second Street Eldridge, IA 52748 TEL: (319) 285-9100 FAX: (319) 285-9109 Gerald Weber, President #### MISSISSIPPI POULTRY ASSOCIATION, INC. P.O. Box 13309 Jackson, MS 39236-3309 TEL: (601) 355-0248 FAX: (601) 353-3840 Mike McAlpin, President #### MISSOURI POULTRY FEDERATION 225 East Capital Jefferson City, MO 65101 TEL: (573) 761-5610 FAX: (573) 761-5619 IoAnn Manhart, Executive Director #### NATIONAL BROILER COUNCIL The Madison Building, Suite 615 1155 15th Street, N.W. Washington, DC 20005-2706 TEL: (202) 296-2622 FAX: (202) 293-4005 #### NATIONAL GOOSE COUNCIL, INC. 7 Oak Street West, P.O. Box 267 Sisseton, SD 57262-0267 TEL: (605) 698-7651 Marlin Schiltz, President #### NATIONAL INDEPENDENT POULTRY & FOOD DISTRIBUTORS ASSN. 958 McEver Rd., Ext. B5 Gainesville, GA 30554 TEL: (770) 535-9901 FAX: (770) 535-7385 Kristin McWhorter Braun, Executive Director #### NATIONAL TURKEY FEDERATION 1225 New York Avenue NW, Suite 400 Washington, DC 20005 TEL: (202) 898-0100 FAX: (202) 898-0203 Stuart L. Procter, President #### NEBRASKA POULTRY IMPROVEMENT ASSOCIATION A 103 Animal Sciences Univesity of Nebraska P.O. Box 830908 Lincoln, NE 68583-0908 TEL: (402) 472-2051 FAX: (402) 472-6362 Susan S. Joy, General Manager #### NEW HAMPSHIRE POULTRY GROWERS ASSOCIATION 20 Goodhue Road Boscawen, NH 03303 TEL: (603) 796-2890 ### NEW YORK STATE POULTRY COODNINATED EFFORT, INC. 5411 Davison Road Clerance, NY 14031 TEL: (716) 759-6802 Kurt Kreher, President #### NORTH CAROLINA EGG ASSOCIATION 1150 SE Maynard Rd., Suite 130 Cary, NC 27511 TEL: (919) 319-1195 FAX: (919) 319-1196 Jan Dorsey, Executive Director #### North Carolina Poultry Federation & TURKEY FEDERATION 4020 Barrett Drive, Suite 102 Raleigh, NC 27609 TEL: (919) 783-8218 FAX: (919) 783-8220 Ed Woodhouse, Executive Director DIRECTORY OF POULTRY ASSOCIATIONS 3 #### ESOURCE INFORMAT #### NORTHWEST EGG PRODUCERS COOPERATIVE ASSOCIATION 540 Kenneth Court SE Olympia, WA 98503 TEL: (360) 412-0662 FAX: (360) 412-0665 Helen Tomicic, Regional Manager #### OHIO POULTRY ASSOCIATION 5930 Sharon Wood Blvd. Columbus, OH 43229 TEL: (614) 882-6111 FAX: (614) 882-9444 Jack Heavenridge, Executive Vice President #### OKLAHOMA EGG COUNCIL 201 Animal Science Building Stillwater, OK 74078 TEL: (405) 744-6058 FAX: (405) 744-7390 Joe Berry, Poultry Specialist #### OKLAHOMA STATE POULTRY FEDERATION P.O. Box 1446 Little Rock, AR 72203 TEL: (501) 375-8131 FAX: (501) 375-5519 Randy Wyatt, Contact #### OREGON BROILER GROWERS ASSOCIATION Shady Oak Farm 84380-N Cloverdale Road Creswell, OR 97426-9431 TEL: (503) 746-2074 Shirley McGuire, Secretary David Johnson, President #### OREGON POULTRY INDUSTRIES COUNCIL P.O. Box 3003 Portland, OR 97208-3003 TEL: (503) 777-1320 FAX: (503) 777-2373 Steven Wagner, President #### PENNSYLVANIA POULTRY FEDERATION 500 North Progress Avenue Harrisburg, PA 17109 TEL: (717) 652-7530 FAX: (717) 652-0230 John D. Hoffman, Executive Director #### SOUTH CAROLINA POULTRY FEDERATION 1201 Main Street, Suite 1220 AT&T Building Columbus, SC 29201 TEL: (803) 748-1283 FAX: (803) 748-1294 Conrie P. Smith, Executive Director. #### SOUTH DAKOTA POULTRY INDUSTRY P.O. Box 2170 Brookings, SD 57007 TEL: (605) 688-5165 FAX: (605) 688-6170 Wendall Carlson, Secretary/Treasurer #### U.S. POULTRY & EGG ASSOCIATION 1530 Cooledge Road Tucker, GA 30084-7303 TEL: (770) 493-9401 FAX: (770) 493-9257 Don Dalton, President Internet http://www.poultryegg.org #### SOUTHERN UNITED EGG PRODUCERS P.O. Box 556 Tucker, GA 30085 TEL: (770) 491-1120 FAX: (770) 491-1145 David Reesman, President #### Tennessee egg & Poultry Association P.O. Box 11082 Knoxville, TN 37939-1082 TEL: (423) 974-7351 FAX: (423) 974-9043 Dr. Carolyn Miller, President #### TENNESSEE POULTRY IMPROVEMENT BOARD, INC P.O. Box 40627, Melrose Station Nashville, TN 37204 TEL: (615) 837-5120 FAX:
(615) 837-5335 Mark Farrar, Administrator #### TEXAS POULTRY FEDERATION 8140 Burnet Road P.O. Box 9589 Austin, TX 78766-9589 TEL: (512) 451-6816 FAX: (512) 451-5142 James Grimm, Executive Director #### United EGG association One Massachusetts Avenue, NW, Suite 800 Washington, DC 20001 TEL: (202) 842-2345 FAX: (202) 682-0775 Christine Nelson, Legislative Director #### UNITED EGG PRODUCERS 1303 Hightower Trail, Suite 200 Atlanta, GA 30350 TEL: (770) 587-8571 FAX: (770) 587-0041 #### Al Pope, President #### usa poultry & egg export council 2300 West Park Place Boulevard, Suite 100 Stone Mountain, GA 30087 TEL: (770) 413-0006 FAX: (770) 413-0007 James Summer, President #### UTAH TURKEY MARKETING BOARD P.O. Box 368 Moroni, UT 84646 TEL: (801) 436-8221 FAX: (801) 436-8101 Dave Bailey, President #### VERMONT POULTRY IMPROVEMENT BOARD 116 State Street Drawer 20 Montipelier, VT 05620-2901 TEL: (802) 828-2500 FAX: (802) 828-2361 Russell Lassocky, Director #### VIRGINIA EGG COUNCIL, INC. 911 Saddleback Court McLean, VA 22102 TEL: (703)790-1984 FAX: (703) 821-6748 Cecilia Glembock, Executive Director #### VIRGINIA POULTRY FEDERATION P.O. Box 552 Harrisonburg, VA 22801 TEL: (540) 433-2451 FAX: (540) 433-3256 John Johnson, President #### WASHINGTON POULTRY INDUSTRY ASSOCIATION P.O. Box 370 Rochester, WA-98579 TEL: (360) 273-5984 FAX: (360) 273-6901 Rod Smart, President #### WASHINGTON POULTRY IMPROVEMENT ASSOCIATION 3825 154 Avenue, NE Redmond, WA 98052 TEL: (206) 885-1414 FAX: (206) 885-3305 Tony Blanch, Secretary/Treasurer #### WEST VIRGINIA POULTRY ASSOCIATION P.O. 612 Moorefield, WV 26836-0612 TEL: (304) 538 2725 Grover See, Executive Secretary #### WILKES AREA POULTRY ASSOCIATION 541 Gaither Road Statesville, NC 28625 TEL: (704) 872-6227 FAX: (704)872-1452 . Jim Sutton, Chairman #### VISCONSIN POULTRY IMPROVEMENT ASSOCIATION . 260 Animal Science Building 1675 Observatory Drive Madison, WI 53706-1248 TEL: (608) 262-9764 FAX: (608) 262-5157 Louis C. Arrington, Professor Other pages in this handbook contain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 DIRECTORY OF POULTRY ASSOCIATIONS 5 ## OTHER SUPPORTING USDA AGENCIES #### Farm Service Agency The USDA's Farm Service Agency supports the U.S. agricultural community through commodity programs, farmer operating and emergency loans, conservation, domestic and overseas food assistance and disaster programs that improve the economic stability of agriculture and the environment. These programs help farmers produce an adequate food supply, compete for export sales, and keep consumer prices reasonable while caring for the environment and natural resources. The Farm Service Agency's mandate is to assure a continuous supply of food and fiber for all Americans, and to promote sound resource management systems. As part of this mandate, it works with poultry producers to share the costs of solving erosion and water quality problems that result from nonpoint source pollution. #### Services Available to Growers The Farm Service Agency administers low-cost loans and cost-share programs. Under the latter, it is authorized to share with producers up to 60 percent of the cost of some conservation practices, including the building waste storage facilities such as lagoons, dry-stacks, and composting units. #### Contact For more information about cost-share programs, call or visit the FSA office listed in your telephone directory. #### Cooperative State Research, Education, and Extension Service The Cooperative State Research, Education and Extension Service (CSREES) links the research and education programs of the USDA and works with land-grant institutions to advance a global system of research, extension, and higher education in the food and agricultural sciences. Its overall mission emphasizes partnerships with the public and private sectors to maximize effectiveness and to improve economic, environmental, and social conditions in the United States. #### Services Available to Growers Educational programs to protect natural resources and the environment, to manage waste efficiently, and to deal with water quality are included in the national priority initiatives of the State Cooperative Research, Education, and Extension System. The Service (which is probably better known simply as Cooperative Extension) is internationally known as a leader in providing community access to research and education. Its publications are widely available and many of them are on the Internet. #### Contact For more information about the Cooperative State Research, Education, and Extension Service, call or visit the CSREES office listed in your telephone directory under local government. Other pages in this handbook comain more detailed information on these subjects. Permission is hereby granted to producers, growers, and associations serving the poultry industry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water for everyone. RI /7 — 9/98 #### **POULTRY WATER QUALITY CONSORTIUM** 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 #### C ## DIRECTORY OF STATE Water Quality Agencies #### ALABAMA SOIL & WATER CONSERVATION COMMITTEE P.O. Box 304800 Montgomery, AL 36130-4800 TEL: (334) 242-2620 FAX: (334)242-0551 Stephen Cauthen, Executive Director #### ALABAMA DEPARTMENT OF **ENVIRONMENTAL MANAGEMENT** 1751 Cong., W.L. Dickerson Drive Montgomery, AL 36109 TEL: (337) 271-7700 FAX: (337) 271-7950 Jim Warr, Director #### ALASKA DEPARTMENT OF NATURAL RESOURCES Department of Agriculture P.O. Box 949 Palmer, AK 99645-0949 TEL: (907) 745-7200 FAX: (907) 745-7112 Jalmar Kerttula, Director ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION 410 Willoughby Avenue, Suite 105 Juneau, AK 99801-1795 TEL: (907) 465-5000 FAX: (907) 465-5274 Michele Brown, Commissioner ## ARIZONA SOIL & WATER CONSERVATION Natural Resource Conservation Division 1616 West Adams, Room 419 - Phoenix, AZ 85007 TEL: (602) 542-4625 FAX: (602) 542-4668 Robert Young, Director #### ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY 3033 N. Central Avenue Phoenix, AZ 85012 TEL: (602) 207-4512 FAX: (602) 207-2218 Russell T. Rhoades, Director #### ARKANSAS SOIL & WATER CONSERVATION COMMISSION 101 E.. Capitol, Suite 350 Little Rock, AR 72201 Phone (501) 682-1611 FAX: (501) 682-3991 Randy Young, Executive Director #### California soil & water conservation AGENCY P.O. Box 944213 Sacramento, CA 94244-2130 Phone (916) 657-0687 FAX: (916) 657-2388 Jesse Diaz, Chief #### CALIFORNIA STATE WATER RESOURCES CONTROL BOARD P.O. Box 100 Sacramento, CA 95812-0100 TEL: (916) 657-1727 FAX: (916) 657-0932 Walt Pettit, Executive Director #### COLORADO STATE SOIL CONSERVATION BOARD 1313 Sherman Street, Room 219 Denver, CO 80203-2243 TEL: (303) 866-3351 FAX: (303) 832-8106 Daniel Parker, Division Director #### COLORADO WATER QUALITY AGENCY Water Quality Control Division 300 Cherry Creek South Denver, CO 80222 TEL: (303) 692-3500 FAX: (303) 782-0390 #### CONNECTICUT DEPARTMENT OF **ENVIRONMENTAL PROTECTION** 79 Elm Street Hartford, CT 06106 TEL: (860) 424-3704 FAX: (860) 424-4067 Robert Smith, Bureau Chief #### DELAWARE DEPARTMENT OF NATURAL RESOURCES & ENVIRONMENTAL CONTROL Division of Water Resources 89 Kings Highway, Box 1401 Dover, DE 19903 TEL: (302) 739-4860 FAX: (302) 739-3491 Gerard L. Espasito, Director #### FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION 2600 Blair Stone Road Tallahassee, FL 32399-2400 TEL: (904) 487-1855 FAX: (904) 487-3618 Memi Drew, Director #### GEORGIA STATE SOIL & WATER CONSERVATION COMMISSION P.O. Box 8024 Athens, GA 30603 TEL: (706) 542-3065 FAX: (706) 542-4242 Graham Liles, Executive Director ## GEORGIA WATER QUALITY MANAGEMENT PROGRAM 7 Martin Luther King Drive, Suite 643 Atlanta, GA 30334 TEL: (404) 656-4988 FAX: (404) 657-7031 Mark Winn, Program Manager ### HAWAII DIVISION OF WATER RESOURCE MANAGEMENT P.O. Box 621 Honolulu, HI 96309 TEL: (808)-587-0214 FAX: (808) 587-0219 Rae Loui, Deputy Director ## HAWAII DIVISION OF ENVIRONMENTAL PLANNING 919 Ala Moana Blvd., 3rd Floor Honolulu, HI 96814 TEL: (808) 586-4337 FAX: (808) 586-4376 June Garrigan, Manager #### IDAHO SOIL CONSERVATION COMMISSION P.O. Box 83720 Boise, ID 83720-0083 TEL: (208) 334-0210 FAX: (208) 334-2339 Wayne R. Faude, Administrator #### IDAHO DIVISION OF ENVIRONMENTAL QUALITY 1410 N. Hilton Boise, ID 83706 TEL: (208) 373-0502 FAX: (208) 373-0417 Wally Cory, Administrator #### ILLINOIS DEPARTMENT OF AGRICULTURE P.O. Box 19281 State Fairgrounds Springfield, IL 62794-9281 TEL: (217) 782-6297 FAX: (217) 524-4882 Alan Gualso, Water Quality Coordinator. ## ILLINOIS DIVISION OF WATER POLLUTION CONTROL Box 19276 2200 Churchill Road Springfield, IL 62794 TEL: (217) 782-3362 Fax:(217) 782-5549 Jim Park, Bureau Chief ## INDIANA DEPARTMENT OF NATURAL RESOURCES Division of Soil Conservation 402 W. Washington Street, Room 265W Indianapolis, IN 46204 TEL: (317) 233-3870 FAX: (317) 233-3882 Harry Nikides, Director ## INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT 100 Senate, P.O. Box 6015 Indianapolis, IN 46206-6015 TEL: (317) 232-8406 FAX: (317) 232-8476 Jan Henley, Assistant Commissioner #### IOWA DIVISION OF SOIL CONSERVATION Wallace State Office Building Des Moines, IA 50319 TEL: (515) 281-6143 FAX: (515) 281-6170 Jim Gulliford, Division Director ## IOWA DEPARTMENT OF NATURAL
RESOURCES Water Quality Planning Division 502 E, 9th Street Des Moines, IA 50319-0034 TEL: (515) 281-5145 FAX: (515) 281-8895 Larry Wilson, Director #### KANSAS STATE CONSERVATION COMMISSION 109 S.W. Ninth Street, Suite 500 Topeka, KS 66612-1200 TEL: (913) 296-3600 FAX: (913) 296-6172 Tracy Street, Executive Director ## Kansas department of health & environment Landon State Office Building, Room 620 Topeka, KS 66612-1290 TEL: (585) 296-1522 FAX: (785) 368-6368 Gary R. Mitchell, Secretary #### **KENTUCKY SOIL & WATER CONSERVATION** COMMISSION 663 Teton Trail Frankfort, KY 40601 TEL: (502) 564-3080 FAX: (502) 564-9195 Stephen Coleman, Director #### KENTUCKY DIVISION OF WATER-NONPOINT SOURCES 14 Reilly Road Frankfort, KY 40601 TEL: (502) 546-3410 FAX: (502) 564-4245 Jack A. Wilson, Director #### LOUISIANA DEPARTMENT OF AGRICULTURE & FORESTRY Office of Soil & Water Conservation P.O. Box 3554 Baton Rouge, LA 70821-3554 TEL: (504) 922-1270 FAX: (504) 922-2577 Bradley Spicer, Executive Director #### LOUISIANA DEPARTMENT OF **ENVIRONMENTAL QUALITY** P.O. Box 82263 Baton Rouge, LA 70884-2263 TEL: (504) 765-0741 FAX: (504) 765-0746 J. Dale Givens, Secretary #### MAINE DEPARTMENT OF AGRICULTURE, FOOD & RURAL RESOURCES State House Station 28 Augusta, ME 04333 TEL: (207) 287-1132 FAX: (207) 287-7548 Peter Mosher, Director #### MAINE BUREAU OF LAND & WATER QUALITY CONTROL Department of Environmental Protection State House Number 17 Augusta, ME 0433. TEL: (207) 287-3901 FAX: (207) 287-7191 Martha Kirkpatrick, Director #### MARYLAND STATE SOIL & WATER CONSERVATION COMMITTEE Maryland Department of Agriculture Annapolis, MD 21401 TEL: (410) 841-5863 FAX: (410) 841-5914 Louise Lawrence, Executive Director #### MARYLAND DEPARTMENT OF THE ENVIRONMENT Watershed Management Administration 2500 Broening Highway Baltimore, MD 21224 TEL: (410) 631-3552 FAX: (410) 613 3888 Jan Nishida, Secretary #### MASSACHUSETTS STATE COMMISSION FOR THE CONSERVATION OF SOIL 100 Cambridge Street, 14th Floor Boston, MA 02202 TEL: (617) 727-1552 FAX: (617) 727-1598 Joel Learner, Director #### MASSACHUSETTS DEPARTMENT OF **ENVIRONMENTAL PROTECTION** 1 Winter Street Boston, MA 02108 TEL: (617) 292-5500 FAX: (617) 556-1049 Dave Terry, Director #### MICHIGAN DEPARTMENT OF AGRICULTURE P.O. Box 30017 Lansing, MI 48909 TEL: (517) 373-1052 FAX: (517) 335-1423 Dan Wyant, Director #### MICHIGAN DEPARTMENT OF NATURAL RESOURCES Surface Water Quality Division P.O. Box 30273 Lansing, MI 48909 TEL: (517) 373-2867 FAX: (517) 373-9958 Bob Miller, Chief #### MINNESOTA BOARD OF WATER & SOIL RESOURCES 1 West Water Street Suite 200 St. Paul, MN 55107 TEL: (612) 296-3767 FAX: (612) 297-5615 Ron Harneck, Executive Director #### MINNESOTA POLLUTION CONTROL AGENCY 520 Lafayette Road St.Paul.MN 55155 TEL: (612) 296-6300 EAX: (612) 297-8687 Peter Larson, Commissioner. #### MISSISSIPPI SOIL & WATER CONSERVATION COMMISSION P.O. Box 23005 Jackson, MS 39225-3005 TEL: (601) 354-7645 FAX: (601) 354-6628 Gale Martin, Executive Director DIRECTORY OF STATE WATER QUALITY AGENCIES #### MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY P.O. Box 10385 Jackson, MS 39289-0385 TEL: (601) 961-5171 FAX: (601) 354-6612 J.L. Palmer Jr., Executive Director ## MISSOURI DEPARTMENT OF NATURAL RESOURCES P.O.: Box 176 Jefferson City, MO 65102 TEL: (573) 751-4932 FAX: (573) 526-3508 Sarah Fast, Director #### MONTANA DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION P.O. Box 201601, 1625 Eleventh Avenue Helena, MT 59620-1606 TEL: (406) 444-6667 FAX: (406) 444-6721 John Tubbs, Bureau Chief ## MONTANA DEPARTMENT OF HEALTH AND ENVIRONMENTAL QUALITY 1530 E. 6th Avenue Helena, MT 59620-0901 TEL: (406) 444-2406 FAX: (406) 444-1374 Mark Simonick, Director ### NEBRASKA NATURAL RESOURCES COMMISSION 301 Centennial Mall South, P.O. Box 94876 Lincoln, NE 68509-4876 TEL: (402) 471-2081 FAX: (402) 471-3132 Dayle Williamson, Director ## NEBRASKA DEPARTMENT OF ENVIRONMENTAL QUALITY P.O. Box 98922 Lincoln, NE 68509 TEL: (402) 471-2186 FAX:(402) 471-2909 Randy Wood, Director ## NEVADA STATE DIVISION OF CONSERVATION DISTRICTS 333 W. Nye Lane, Room 126 Carson City, NV 89710 TEL: (702) 687-6977 FAX: (702) 687-3783 Pete Morris, Director ### NEVADA DEPARTMENT OF CONSERVATION & NATURAL RESOURCES Carson City, NV 89706-0851 TEL: (702) 687-4670 FAX: (702) 687-5856 L.H. Dodgin, Administrator 333 W. Nye Lane ## NEW HAMPSHIRE DEPARTMENT OF AGRICULTURE P.O. Box 2042 Concord, NH 03302-2042 TEL: (603) 271-3551 FAX: (603) 271-1109 Stephen H. Taylor, Commissioner #### NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES P.O. Box 95 6 Hazen Drive Concord, NH 03302-0095 TEL: (603) 271-3503 FAX: (603) 271-2867 Robert W. Varney, Commissioner ## NEW JERSEY STATE SOIL CONSERVATION COMMITTEE New Jersey Department of Agriculture P.O Box 330, Room 204 Trenton, NJ 08625 TEL: (609) 292-5540 FAX: (609) 633-7229 Santuel R. Race, Executive Secretary ## NEW JERSEY BUREAU OF WATER QUALITY PLANNING 401 East State Street, P.O. Box 029 Trenton, NJ 08625-0029 TEL: (609) 633-7021 FAX: (609) 984-2147 Barry Chalofsky, Bureau Director #### NEW MEXICO SOIL & WATER CONSERVATION BUREAU Energy & Forestry Resource Conservation P.O. Box 1948 Santa Fe, NM 87504-1948 TEL: (505) 827-5830 FAX: (505) 827-3903 Toby Martinez, Director ## NEW MEXICO ENVIRONMENTAL DEPARTMENT Purchase Water Quality Bureau P.O. Box 26110 Santa Fe, NM 87502 TEL: (505) 827-0187 FAX: 505 (827-0160 Ed Kelley, Division Director ## NEW YORK STATE DEPARTMENT OF SOIL & WATER CONSERVATION 1 Winners Circle Albany, NY 12235 TEL: (518) 457-3738 FAX: (518) 457-3412 Jim McCardell, Acting Director #### NEW YORK DEPARTMENT OF ENVIRONMENTAL CONSERVATION 50 Wolf Road Room 310C Albany, NY 12233-3500 TEL: (518) 457-6674 TEL: (518) 457-6674 FAX: (518) 485-7786 N.G. Kaul, Director ## NORTH CAROLINA DIVISION OF SOIL & WATER CONSERVATION Box 27687 Raleigh, NC 27611-7687 TEL: (919) 733-2302 FAX: (919) 715-3559 Dewey Botts, Director #### NORTH CAROLINA DEPARTMENT OF ENVIRONMENT & NATURAL RESOURCES P.O. Box 27687 Raleigh,NC 27611 TEL: (919) 733-4064 FAX: (919) 733-3558 John N. Morris, Director #### NORTH DAKOTA STATE SOIL CONSERVATION COMMITTEE State Capitol 600 East Boulevard Avenue Bismark, ND 58505-0790 TEL: (701) 328-2650 FAX: (701) 328-4143 Blake VanderVorst, Executive Secretary #### NORTH DAKOTA DEPARTMENT OF HEALTH 600 East Blvd., Avenue Bismark, ND 58505-0200 TEL: (701) 328-2372 FAX: (701) 328-4727 Kenon Bullinger, Director #### OHIO DEPARTMENT OF NATURAL RESOURCES Soil & Water Conservation District 1939 Fountain Square Court, Building E-2 Columbus, OH 43224 TEL: (614) 265-6610 FAX: (614) 262-2064 Larry Vance, Chief #### OHIO ENVIRONMENTAL PROTECTION AGENCT 1800 Watermark Drive Columbus, OH 43215 TEL: (614) 644-3020 FAX: (614) 644-2329 Tom Behlen, Chief #### OKLAHOMA CONSERVATION COMMISSION 2800 N. Lincoln Boulevard, Suite 160 Oklahoma City, OK 73105 TEL: (405) 521-2384 FAX: (405) 521-6686 Mason Mungle, Executive Director #### OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY 1000 N.E. 10th Street, Suite 1212 Oklahoma City, OK 73117-1212 TEL: (405) 271-8056 FAX: (405) 271-8425 Mark Coleman, Executive Director #### OREGON DEPARTMENT OF AGRICULTURE Natural Resources Division 635 Capitol Street, NE Salem, OR 97310 TEL: (503) 986-4700 FAX: (503) 986-4730 Charles Craig, Administrator #### OREGON DEPARTMENT OF ENVIRONMENTAL QUALITY 811 SW 6th Avenue Portland, OR 97204-1390 TEL: (503) 229-5630 FAX: (503) 229-6124 Jim Giadson, Manager ## PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION P.O. Box 8465 Harrisburg, PA 17105-8465 TEL: (717) 787-2666 FAX: (717) 772-5156 Glenn Maurer, Director #### PUERTO RICO NATURAL RESOURCES CONSERVATION SERVICE P.O. Box 364868 San Juan, PR 00936-4868 TEL. (787) 766-5206 FAX: (787) 766-5987 Juan Martinez, State Conservationist #### PUERTO RICO ENVIRONMENTAL PROTECTION AGENCY 1492 Ponce De Leon Ave. Centro Europa Building, Suite 417 San Juan, PR 00907-4127 TEL.: (787) 729-6920 FAX: (787) 729-7747 Carl Axel Soderberg, Director #### RHODE ISLAND DEPARTMENT OF ENVIRONMENTAL MANAGEMENT 235 Promenade Street Providence, RI 02908 TEL: (401) 277-3961 FAX: (401) 277-6177 Andrew McLeod, Director #### SOUTH CAROLINA LAND RESOURCES CONSERVATION COMMISSION 2221 Devine Street, Suite 222 Columbia, SC 29205 TEL: (803) 734-9100 FAX: (803) 734-9200 Cary Chamblee, Deputy Director DIRECTORY OF STATE WATER QUALITY AGENCIES 5 #### SOUTH CAROLINA BUREAU OF WATER 2600 Bull Street Columbia, SC 29201 TEL: (803) 734-5228 FAX: (803) 734-5355 Alton Boozer, Chief #### SOUTH DAKOTA DEPARTMENT OF **AGRICULTURE** 523 East Capitol Avenue Pierre, SD 57501-3182 TEL: (605) 773-3375 FAX: (605) 773-3481 Darrell Cruea, Secretary #### SOUTH DAKOTA DIVISION OF FINANCIAL MANAGEMENT 523 E. Capitol Pierre, SD 57501 TEL: (605) 773-4216 FAX: (605) 773-4368 Kelly Wheeler, Director #### TENNESSEE STATE DEPARTMENT OF **AGRICULTURE** Agriculture Resources Division Ellington Center P.O. Box 40627 Nashville, TN 37204 TEL: (615) 360-0108 FAX: (615) 360-0637 Jim Nance, Director #### TENNESSEE DEPARTMENT OF CONSERVATION & ENVIRONMENT 401 Church Street 6th Floor L&C Annex Nashville, TN 37243-1534 TEL: (615) 532-0625 FAX: (615) 532-0614 Garland Wiggins, Deputy Director #### TEXAS STATE SOIL & WATER CONSERVATION BOARD P.O. Box 658 Temple, TX 76503 TEL: (817) 773-2250 FAX: (817) 773-3311 Robert G. Buckley, Executive Director #### **UTAH STATE SOIL CONSERVATION** COMMISSION Department of Agriculture P.O. Box 146500 Salt Lake City, UT 84114-6500 TEL: (801) 538-7171 FAX: (801) 538-7126 Cary Peterson, Commissioner #### UTAH DIVISION OF WATER QUALITY 288 N. 1460 West Salt Lake City, UT 84114-4870 TEL: (801) 538-6146 FAX: (801) 538-6016 Don Ostler, Director #### **VERMONT NATURAL RESOURCES** CONSERVATION COMMISSION 103 South Main Street Waterbury, VT 05671-0301 TEL: (802) 241-3601 FAX: (802) 244-1102 Barbara Ripley, Secretary #### VERMONT DEPARTMENT OF **ENVIRONMENTAL CONSERVATION** Agency of Natural Resources **Building 10 North** 103 South Main Street, 2nd Floor
Waterbury, VT 05671-0408 TEL: (802) 241-3770 FAX: (802) 241-3287 Tom Willard, Chief #### virgin islands economic development & AGRICULTURE Estate Lower Love Kingshill, VI 00850 TEL: (809) 778-0997 FAX: (809) 778-7977 Dr. Arthur Petersen, Commissioner #### VIRGIN ISLANDS DIVISION OF **ENVIRONMENTAL PROTECTION** 396-1 Annas Retreat St Thomas, VI 00802 TEL: (340) 777-4577 FAX: (340) 774-5416 Austin Moorehead, Director #### VIRGIN ISLANDS DEPARTMENT OF PLANNING & NATURAL RESOURCES 369-1 Foster Plaza St. Thomas, VI 00802 TEL: (340) 774-3320 FAX: (340) 775-5006 Beulah Dalmida-Smith, Commissioner #### VIRGINIA DIVISION OF SOIL & WATER CONSERVATION 203 Governor Street, Suite 206 Richmond, VA 23219 TEL: (804) 786-2064 FAX: (804) 786-1798 Jack E. Frye, Director #### STATE OF WASHINGTON CONSERVATION COMMISSION P.O. Box 47721 Olympia, WA 98504-7721 TEL: (360) 407-6200 FAX: (360) 407-6215 Steven Myer, Executive Director 6 DIRECTORY OF STATE WATER QUALITY AGENCIES #### N OU RCE #### WASHINGTON STATE DEPARTMENT OF **ECOLOGY** P.O. Box 47600 Olympia, WA 98504-7600 TEL: (360) 407-6000 FAX: (360) 407-6426 Mary Riveland, Director #### WEST VIRGINIA DEPARTMENT OF CONSERVATION COMMISSION 1900 Kanawha Boulevard East Charleston, WV 25305-0193 · TEL: (304) 558-2204 FAX: (304) 558-1635 Lance Tabor, Executive Director #### WEST VIRGINIA DIVISION OF ENVIRONMENTAL PROTECTION 1201 Greenbrier Street Charleston, WV 25311 TEL: (304) 558-2107 FAX: (304) 558-5905 Barbara Taylor, Chief #### WISCONSIN DEPARTMENT OF NATURAL RESOURCES **Bureau of Watershed Management** P.O. Box 7921 Madison, WI 53707-7921 TEL: (608) 267-7610 FAX: (608) 267-2800 Paulette Harder, Director #### WYOMING DEPARTMENT OF AGRICULTURE 2219 Carey Avenue Cheyenne, WY 82002 TEL: (307) 777-6579 FAX: (307) 777-6593 Ron Micheli, Director #### WYOMING WATER DEVELOPMENT COMMISSION Herschler Building 4th Floor West Cheyenne, WY 82002 TEL: (307) 777-7626 FAX: (307) 777-6819 Mike Besson, Director Other pages in this handbook contain more detailed information on these subjects. Permission is hereby ornated to producers, growers, and associations serving the poultry to reproduce this material for further distribution. The Poultry Water Quality Consortium is a cooperative effort of industry and government to identify and adopt prudent uses of poultry by-products that will preserve the quality of water RI / 8 -- 12/97 for everyone. #### **POULTRY WATER QUALITY CONSORTIUM** 6100 Building, Suite 4300 • 5720 Uptain Road • Chattanooga, TN 37411 Tel: 423 855-6470 • Fax: 423 855-6607 DIRECTORY OF STATE WATER QUALITY AGENCIES Case 4:05-cv-00329-GKF-PJC Document 2132-7 Filed in USDC ND/OK on 06/02/2009 Page 76 of 76 POULTRY WATER QUALITY CONSORTIUM 6100 Building, Suite 4300 5720 Uptain Road Chattanooga, TN 37411 Tel: 423 855-6470 Fax: 423 855-6607